Relation: |
https://revistas.unal.edu.co/index.php/rcolquim/article/view/85301/77487; https://revistas.unal.edu.co/index.php/rcolquim/article/view/85301/77488; https://revistas.unal.edu.co/index.php/rcolquim/article/view/85301/77030; N. Suárez, “Will Government Inaction See Landmine Use Spike in Colombia?,” Insight Crime, 2020. [Online]. Available: https://www.insightcrime.org/news/brief/government-inaction-landmine-spike-colombia/.; P. A. Prada and M. Chávez Rodríguez, “Demining dogs in Colombia – A review of operational challenges, chemical perspectives, and practical implications,” Sci. Justice, vol. 56, no. 4, pp. 269–277, 2016, doi:10.1016/j.scijus.2016.03.002.; C. Case, “Preparing for humanitarian demining in post-conflict Colombia,” J. Conv. Weapons Destr., vol. 19, no. 2, pp. 7–12, Jul. 2015.; Information provided by Centro Nacional Contra Artefactos Explosivos y Minas – CENAM (National Center for Explosive and Landmines ), Colombia , 2016.; L. Cardona, J. Jiménez, and N. Vanegas, “Landmine detection technologies to face the demining problem in Antioquia,” Dyna, vol. 81, no. 183, pp. 115–125, 2014, doi:10.15446/dyna.v81n183.37441.; Ejercito Nacional, “Centro Nacional contra Artefactos Explosivos y Minas (CENAM).” [Online]. Available: https://www.ejercito.mil.co/?idcategoria=392058.; A. M. Djerdjev, P. Priyananda, J. K. Beattie, C. Neto, and B. S. Hawkett, “The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds,” J. Environ. Chem. Eng., vol. 6, 2017, pp. 281–288. doi:10.1016/j.jece.2017.12.003.; C. Oommen and S. R. Jain, “Ammonium nitrate: A promising rocket propellant oxidizer,” J. Hazard. Mater., vol. 67, no. 3, pp. 253–281, 1999. doi:10.1016/S0304-3894(99)00039-4.; F. L. Steinkamp, B. Giordano, G. Collins, and S. Rose-Pehrsson, “Volatile emissions of ammonium nitrate under flowing conditions,” Propellants, Explos. Pyrotech., vol. 40, no. 5, pp. 682–687, 2015, doi:10.1002/prep.201500001.; S. M. Silva, J. D. Gamarra, C. A. Hernández, and J. F. Osma, “Design and fabrication of a sensor for explosives as a first step to an IED detection device,” 2014 IEEE 9th Iberoam. Congr. Sensors, IBERSENSOR 2014 - Conf. Proc., pp. 7–10, 2014, doi:10.1109/IBERSENSOR.2014.6995515.; M. A. M. Huri, U. K. Ahmad, R. Ibrahim, and M. Omar, “A review of explosive detection from forensic chemistry perspective,” Malaysian J. Anal. Sci., vol. 21, no. 2, pp. 267–282, 2017, doi:10.17576/mjas-2017-2102-01.; W. Zhang et al., “Recent developments in spectroscopic techniques for the detection of explosives,” Materials (Basel)., vol. 11, no. 8, 2018, doi:10.3390/ma11081364.; D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging, vol. 8, no. 1, pp. 9–38, 2007, doi:10.1007/s11220-007-0029-8.; M. Mäkinen, M. Nousiainen, and M. Sillanpää, “Ion spectrometric detection technologies for ultra-traces of explosives: A review,” Mass Spectrom, vol. 30 no. 5, pp. 940–973, 2011, doi:10.1002/mas.20308.; L. Barron and E. Gilchrist, “Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis,” Anal. Chim. Acta, vol. 806, pp. 27–54, 2014, doi:10.1016/j.aca.2013.10.047.; M. Calcerrada, M. González-Herráez, and C. García-Ruiz, Recent advances in capillary electrophoresis instrumentation for the analysis of explosives, vol. 75. 2016.; F. G. M. Mauricio, A. Z. Pralon, M. Talhavini, M. O. Rodrigues, and I. T. Weber, “Identification of ANFO : Use of luminescent taggants in post-blast residues,” Forensic Sci. Int., vol. 275, pp. 8–13, 2017, doi:10.1016/j.forsciint.2017.02.029.; J. Yinon, “Explosives,” in Forensic Science Handbook of Analytical Separations, vol. 6, 2008, pp. 823–838.; S. J. Benson, C. J. Lennard, P. Maynard, D. M. Hill, A. S. Andrew, and C. Roux, “Forensic analysis of explosives using Isotope Ratio Mass Spectrometry (IRMS) - Discrimination of ammonium nitrate sources,” Sci. Justice, vol. 49, no. 2, pp. 73–80, 2009, doi:10.1016/j.scijus.2009.04.005.; P. M. Flanigan, J. J. Brady, E. J. Judge, and R. J. Levis, “Determination of inorganic improvised explosive device signatures using laser electrospray mass spectrometry detection with offline classification,” Anal. Chem., vol. 83, no. 18, pp. 7115–7122, 2011, doi:10.1021/ac2014299.; V. V. Hernandes et al., “Characterization of ANFO explosive by high accuracy ESI(±)–FTMS with forensic identification on real samples by EASI(−)–MS,” Forensic Sci. Int., vol. 249, pp. 156–164, 2015, doi:10.1016/j.forsciint.2015.01.006.; M. J. Pavlovich, B. Musselman, and A. B. Hall, “Direct Analysis in Real Time — Mass Spectrometry (DART-MS) in forensic and security applications,” Mass Spectrom. Rev., vol. 37, no. 2, pp. 171–187, 2018, doi:10.1002/mas.21509; T. P. Forbes, E. P. Sisco, and M. E. Staymates, “Detection of nonvolatile inorganic oxidizer-based explosives from wipe collections by infrared thermal desorption – direct analysis in real time mass spectrometry,” Anal. Chem., vol. 90, no. 11, pp. 6419–6425, 2018, doi:10.1021/acs.analchem.8b01037.; M. López-López and C. García-Ruiz, “Infrared and Raman spectroscopy techniques applied to identification of explosives,” Trends Anal. Chem., vol. 54, pp. 36–44, 2014, doi:10.1016/j.trac.2013.10.011.; B. Yellampelle, M. Sluch, S. Asher, and B. Lemoff, “Multiple-excitation-wavelength resonance-Raman explosives detection,” Chem. Biol. Radiol. Nucl. Explos. Sens. XII, vol. 8018, p. 801-819, 2011, doi:10.1117/12.887087.; M. R. Almeida, L. P. L. Logrado, J. J. Zacca, D. N. Correa, and R. J. Poppi, “Raman hyperspectral imaging in conjunction with independent component analysis as a forensic tool for explosive analysis: The case of an ATM explosion,” Talanta, vol. 174, pp. 628–632, 2017, doi:10.1016/j.talanta.2017.06.064.; J. Miller and G. Barrall, “Explosives detection with Nuclear Quadrupole Resonance: an emerging technology will help to uncover land mines and terrorist boms,” Am. Sci., vol. 93, no. 1, p. 50-57, 2005, doi:10.1511/2005.1.50.; Rudakov T.N., "Some Aspects of the Effective Detection of Ammonium Nitrate-Based Explosives by Pulsed NQR Method," Appl. Magn. Reson., vol. 43, p. 557–566, 2012, doi:10.1007/s00723-012-0330-0; LINSEIS - Thermische Analyse, “Análisis Térmico Diferencial.” [Online]. Available: https://www.linseis.com/es/nuestros-productos/analisis-termico-diferencial/.; A. Nazarian and C. Presser, “Forensic methodology for the thermochemical characterization of ANNM and ANFO homemade explosives,” Thermochim. Acta, vol. 608, pp. 65–75, 2015, doi:10.1016/j.tca.2015.04.006.; F. Zapata, M. Ferreiro-González, and C. García-Ruiz, “Interpreting the near infrared region of explosives,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 204, pp. 81–87, 2018, doi:10.1016/j.saa.2018.06.002.; L. E. Cevallos-Robalino, G. F. García-Fernández, A. Lorente, E. Gallego, H. R. Vega-Carrillo, and K. A. Guzmán-García, “Analysis by Monte Carlo of thermal neutron flux from a 241Am/9Be source for a system of trace analysis in materials,” Appl. Radiat. Isot., vol. 151, pp. 19–24, 2019, doi:10.1016/j.apradiso.2019.04.041.; L. E. Cevallos, G. Felipe, G. Fernández, E. Gallego, K. A. Guzmán-garcía, and H. R. Vega-carrillo, “Study by Monte Carlo methods of an explosives detection system made up with a D-D neutron generator and NaI ( Tl ) gamma detectors,” Appl. Radiat. Isot., vol. 141, pp. 167-175, 2018, doi:10.1016/j.apradiso.2018.02.018.; I. FLIR Systems, “FLIR Systems - The World’s Sixth Sense.” [Online]. Available: https://www.flir.com.mx/products/fido-x2/.; J. S. Yang and T. M. Swager, “Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects,” J. Am. Chem. Soc., vol. 120, no. 46, pp. 11864–11873, 1998, doi:10.1021/ja982293q.; V. Kumar, B. Maiti, M. K. Chini, P. De, and S. Satapathi, “Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics,” Sci. Rep., vol. 9, 2019, doi:10.1038/s41598-019-43836-w.; A. R. Sun, X. Huo, H. Lu, and S. Feng, D. Wand, and H. Liu, “Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives,” Sensors Actuators B. Chem., vol. 265, pp. 476–487, 2018, doi:10.1016/j.snb.2018.03.072.; S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh, “Highly selective detection of nitro explosives by a luminescent Metal-Organic Framework,” Angew. Chemie - Int. Ed., vol. 52, no. 10, pp. 2881–2885, 2013, doi:10.1002/anie.201208885.; L. Xun-Gao et al., “A new luminescent metal-organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media,” J. Mater. Chem. C, vol. 6, no. 12, pp. 2983–2988, 2018, doi:10.1039/C7TC05535H.; S. Sheykhi, L. Mosca, and P. Anzenbacher, “Toward wearable sensors: Optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM,” Chem. Commun., vol. 53, no. 37, pp. 5196–5199, 2017, doi:10.1039/c7cc01949a.; N. A. Travlou, K. Singh, E. Rodríguez-Castellón, and T. J. Bandosz, “Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors,” J. Mater. Chem. A, no. 3 vol. 21, pp. 11417–11429, 2015, doi:10.1039/C5TA01738F.; M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chemie - Int. Ed., vol. 54, no. 14, pp. 4349–4352, 2015, doi:10.1002/anie.201411854.; L. H. Humphreys, I. J. Wilson, D. Mcateer, and J. Pons, “Development of Metal-Organic Framework ( MOF ) Sensors for Landmine Detection,” in 17th International meeting on chemical sensors-IMCS, 2018, pp. 450–451, doi:10.1039/c7ta07847a.; L. E. DeGreeff, S. L. Rose-Pehrsson, M. Malito, and C. J. Katilie, “Analytical support, characterization and optimization of a canine training aid delivery system : Phase 2,” Washington, 2016.; S. Balasubramanian and S. Panigrahi, “Solid-Phase Microextraction (SPME) techniques for quality characterization of food products: A Review,” Food Bioprocess Technol., vol. 4, pp. 1–26, 2011, doi:10.1007/s11947-009-0299-3.; H. Brown, K. P. Kirkbride, P. E. Pigou, and G. S. Walker, “New developments in SPME Part 2: Analysis of ammonium nitrate-based explosives.,” J Forensic Sci, vol. 49, no. 2, pp. 215–21, 2004, doi:10.1520/JFS2003219.; A. L. Lubrano, B. Andrews, M. Hammond, G. E. Collins, and S. Rose-Pehrsson, “Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry,” J. Chromatogr. A, vol. 1429, pp. 8–12, 2016, doi:10.1016/j.chroma.2015.11.054.; L. E. DeGreeff et al., “Passive delivery of mixed explosives vapor from separated components,” Forensic Chem., vol. 4, pp. 19–31, 2017, doi:10.1016/j.forc.2017.02.010.; A. Y. Garzón-Serrano, C. A. Sierra, O. Rodríguez-Bejarano, and D. Sinuco, “Volatile Organic Compounds , Spectral Characterization and Morphology of Ammonium Nitrate Fuel Oil ( ANFO ) Samples,” J. Forensic Sci., vol. 65, no. 4, 2020, doi:10.1111/1556-4029.14312.; P. Suppajariyawat, M. Elie, M. Baron, and J. Gonzalez-Rodriguez, “Classification of ANFO samples based on their fuel composition by GC–MS and FTIR combined with chemometrics,” Forensic Sci. Int., vol. 301, pp. 415–425, 2019, doi:10.1016/j.forsciint.2019.06.001.; L. Figuli, V. Kavicky, S. Jangl, and Z. Zvakova, “Comparison of the efficacy od homemade and industrially made ANFO explosives as an improvised explosive device charge,” Commun. Lett. Univ. Zilina, vol. 20, no. 2, pp. 23–27, 2018.; P. E. Gallego Parra, “IEDs: A major threat for a struggling society,” J. ERW Mine Action, vol. 13, no. 3, pp. 49–53, 2009.; J. Mass et al., “Identification of explosive substances through improved signals obtained by a portable Raman spectrometer,” Spectrosc. Lett., vol. 45, no. 6, pp. 413–419, Sep. 2012, doi:10.1080/00387010.2011.627528.; J. Gutierrez Bolivar, “Diseño conceptual del sistema portante para un sensor GPR en un dispositivo para detección de minas antipersona en Antioquia-Colombia,” Undergraduate Thesis, Universidad Nacional de Colombia, sede Medellín, 2011.; A. Bayram and G. Bozdağı Akar, “Forward-looking infrared imagery for landmine detection,” Infrared Technology and Applications XLIII, vol. 10177, pp. 1–13, 2017. doi:10.1117/12.2262594.; T. Bechtel et al., “Characterization of electromagnetic properties of in situ soils for the design of landmine detection sensors: Application in Donbass, Ukraine,” Remote Sens., vol. 11, no. 10, 2019, doi:10.3390/rs11101232.; T. Qin et al., “Influence Analysis of Uneven Surface on Landmine Detection Using Holographic Radar,” Prog. Electromagn. Res. Symp., pp. 683–691, 2018, doi:10.23919/PIERS.2018.8597927.; J. Coronado-Vergara, G. Avina-Cervantes, M. Devy, and C. Parra, “Towards landmine detection using artificial vision”, Intelligent Robots and Systems (IROS 2005), pp. 659–664, 2005 doi:10.1109/IROS.2005.1545250.; C. Castiblanco, J. Rodriguez, I. Mondragón, C. Parra, and J. Colorado, “Air drones for explosive landmines detection,” ROBOT2013: First Iberian Robotics Conference, 2013, vol. 253, pp. 107–114, 2013. DOI:10.1007/978-3-319-03653-3_9; J. Rodriguez, C. Castiblanco, I. Mondragon, and J. Colorado, “Low-cost quadrotor applied for visual detection of landmine-like objects,” Unmanned Aircraft Systems (ICUAS), pp. 83–88, 2014, doi:10.1109/ICUAS.2014.6842242.; M. Knox et al., “Sensor fusion for buried explosive threat detection for handheld data,”, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 2018, 2017, doi:10.1117/12.2263013.; M. Sato, K. Kikuta, and R. B. Miller, “Evaluation of ALIS GPR for Humanitarian Demining in Colombia and Cambodia,” in International Conference of Electromagnetics in Advanced Applications (ICEAA), Cartagena de Indias, pp. 114–117, 2018, doi:10.1109/ICEAA.2018.8520518.; L. Cardona, Y. Miyato, H. Itozaki, J. Jiménez, N. Vanegas, and H. Sato-Akaba, “Remote detection of ammonium nitrate by nuclear quadrupole resonance using a portable system,” Appl. Magn. Reson., vol. 46, pp. 295–307, 2015. doi:10.1007/s00723-014-0623-6.; Applied Spectra, What is LIBS?. [Online] Available: https://appliedspectra.com/technology/libs.html.; D. Díaz, D. W. Hahn, and A. Molina, “Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils,” in The International Society for Optical Engineering, p. 73031E, 2009. doi:10.1117/12.818391.; R. J. Harper and K. G. Furton, “Biological detection of explosives,” in Counterterrorist Detection Techniques of Explosives, 2007, pp. 395–431.; ONG, “APOPO.” [Online]. Available: https://www.apopo.org/en.; L. F. Mendez Pardo and A. M. Perez Acosta, “Research in Colombia on explosives detection by rats,” J. ERW Mine Action, vol. 13, no. 3, pp. 45–46, 2009.; U. Tomšič and I. Muševič. “Detection of explosives : Dogs vs CMOS Capacitive Sensors,” Seminar 1a 1st year 2nd cycle. University of Ljubljana, 2013.; M. Wackermannová, L. Pinc, and L. Jebavý, “Olfactory sensitivity in mammalian species”, Physiol. Res., vol. 65, no. 3, pp. 369–390, 2016. doi:10.33549/physiolres.932955.; J. Yinon, Counterterrorist detection techniques of explosives. Amsterdam; Boston: Elsevier, 2007.; K. Beltz, “The Development of calibrants through characterization of Volatile Organic Compounds from peroxide based explosives and a non-target chemical calibration compound”, dissertation for the degree of Doctor of Philosophy in Chemistry, Florida International University, Miami, Florida, 2013.; R. J. Sargisson, I. G. Mclean, H. Bach, and J. Brown, “Environmental Determinants of Landmine Detection by Dogs : Findings From a Large-scale Study in Afghanistan,” J. ERW mine action, vol. 16, pp. 74-81, 2012.; A. Göth, I. McLean, and J. Trevelyan, “How do dogs detect landmines? A summary of research results,” in Mine Detection Dogs: Training, Operations and Odour Detection, Geneva, 2003, pp. 195–208.; L. Lazarowski et al., “Olfactory discrimination and generalization of ammonium nitrate and structurally related odorants in Labrador retrievers,” Anim. Cogn., vol. 18, no. 6, pp. 1255–1265, 2015, doi:10.1007/s10071-015-0894-9.; https://revistas.unal.edu.co/index.php/rcolquim/article/view/85301 |