Academic Journal

Dynamical Behaviors of an SIR Epidemic Model with Discrete Time

التفاصيل البيبلوغرافية
العنوان: Dynamical Behaviors of an SIR Epidemic Model with Discrete Time
المؤلفون: Bo Li, Zohreh Eskandari, Zakieh Avazzadeh
المصدر: Fractal and Fractional; Volume 6; Issue 11; Pages: 659
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2022
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: SIR epidemic model, bifurcation, normal form, continuation method, strong resonances
الوصف: Analytically and numerically, the study examines the stability and local bifurcations of a discrete-time SIR epidemic model. For this model, a number of bifurcations are studied, including the transcritical, flip bifurcations, Neimark–Sacker bifurcations, and strong resonances. These bifurcations are checked, and their non-degeneracy conditions are determined by using the normal form technique (computing of critical normal form coefficients). We use the MATLAB toolbox MatcontM, which is based on the numerical continuation method, to confirm the obtained analytical results and specify more complex behaviors of the model. Numerical simulation is employed to present a closed invariant curve emerging from a Neimark–Sacker point and its breaking down to several closed invariant curves and eventually giving rise to a chaotic strange attractor by increasing the bifurcation parameter.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: https://dx.doi.org/10.3390/fractalfract6110659
DOI: 10.3390/fractalfract6110659
الاتاحة: https://doi.org/10.3390/fractalfract6110659
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.319DBF10
قاعدة البيانات: BASE
الوصف
DOI:10.3390/fractalfract6110659