Academic Journal

Operational Dst index prediction model based on combination of artificial neural network and empirical model

التفاصيل البيبلوغرافية
العنوان: Operational Dst index prediction model based on combination of artificial neural network and empirical model
المؤلفون: Park Wooyeon, Lee Jaejin, Kim Kyung-Chan, Lee JongKil, Park Keunchan, Miyashita Yukinaga, Sohn Jongdae, Park Jaeheung, Kwak Young-Sil, Hwang Junga, Frias Alexander, Kim Jiyoung, Yi Yu
المصدر: Journal of Space Weather and Space Climate, Vol 11, p 38 (2021)
بيانات النشر: EDP Sciences
سنة النشر: 2021
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: space weather model, dst index prediction, artificial neural network, Meteorology. Climatology, QC851-999
الوصف: In this paper, an operational Dst index prediction model is developed by combining empirical and Artificial Neural Network (ANN) models. ANN algorithms are widely used to predict space weather conditions. While they require a large amount of data for machine learning, large-scale geomagnetic storms have not occurred sufficiently for the last 20 years, Advanced Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) mission operation period. Conversely, the empirical models are based on numerical equations derived from human intuition and are therefore applicable to extrapolate for large storms. In this study, we distinguish between Coronal Mass Ejection (CME) driven and Corotating Interaction Region (CIR) driven storms, estimate the minimum Dst values, and derive an equation for describing the recovery phase. The combined Korea Astronomy and Space Science Institute (KASI) Dst Prediction (KDP) model achieved better performance contrasted to ANN model only. This model could be used practically for space weather operation by extending prediction time to 24 h and updating the model output every hour.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2115-7251
Relation: https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200062/swsc200062.html; https://doaj.org/toc/2115-7251; https://doaj.org/article/06584567789743f98be81ec67584aecf
DOI: 10.1051/swsc/2021021
الاتاحة: https://doi.org/10.1051/swsc/2021021
https://doaj.org/article/06584567789743f98be81ec67584aecf
رقم الانضمام: edsbas.2F1CBF02
قاعدة البيانات: BASE
الوصف
تدمد:21157251
DOI:10.1051/swsc/2021021