Academic Journal

PROBLEMS OF CLASSIFYING ASSOCIATIVE OR LIE ALGEBRAS OVER A FIELD OF CHARACTERISTIC NOT TWO AND FINITE METABELIAN GROUPS ARE WILD

التفاصيل البيبلوغرافية
العنوان: PROBLEMS OF CLASSIFYING ASSOCIATIVE OR LIE ALGEBRAS OVER A FIELD OF CHARACTERISTIC NOT TWO AND FINITE METABELIAN GROUPS ARE WILD
المؤلفون: Genrich Belitskii, Andrii R. Dmytryshyn, Ruvim Lipyanski, Vladimir V. Sergeichuk, Arkady Tsurkov
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp516-529.pdf.
سنة النشر: 2009
المجموعة: CiteSeerX
مصطلحات موضوعية: Wild problems, Classification, Associative algebras, Lie algebras, Metabelian
الوصف: Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central commutator subgroup of order p 3 are hopeless since each of them contains • the problem of classifying symmetric bilinear mappings U × U → V,or • the problem of classifying skew-symmetric bilinear mappings U × U → V, in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over F up to similarity.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.193.799; http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp516-529.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.193.799
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp516-529.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.2A10EF7B
قاعدة البيانات: BASE