Academic Journal

A Riemann-Hilbert approach to Fredholm determinants of Hankel composition operators: scalar-valued kernels

التفاصيل البيبلوغرافية
العنوان: A Riemann-Hilbert approach to Fredholm determinants of Hankel composition operators: scalar-valued kernels
المؤلفون: Bothner, Thomas
المصدر: Bothner , T 2023 , ' A Riemann-Hilbert approach to Fredholm determinants of Hankel composition operators: scalar-valued kernels ' , Journal of Functional Analysis , vol. 285 , no. 12 , 110160 , pp. 1-109 . https://doi.org/10.1016/j.jfa.2023.110160
سنة النشر: 2023
المجموعة: University of Bristol: Bristol Reserach
مصطلحات موضوعية: Hankel composition operators, Fredholm determinants, integrable systems, Riemann-Hilbert problems, nonlinear steepest descent method, Achiever-Kac theorems
الوصف: We characterize Fredholm determinants of a class of Hankel composition operators via matrix-valued Riemann-Hilbert problems, for additive and multiplicative compositions. The scalar-valued kernels of the underlying integral operators are not assumed to display the integrable structure known from the seminal work of Its, Izergin, Korepin and Slavnov [44]. Yet we are able to describe the corresponding Fredholm determinants through a naturally associated Riemann-Hilbert problem of Zakharov-Shabat type by solely exploiting the kernels' Hankel composition structures. We showcase the efficiency of this approach through a series of examples, we then compute several rank one perturbed determinants in terms of Riemann-Hilbert data and finally derive Akhiezer-Kac asymptotic theorems for suitable kernel classes.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1016/j.jfa.2023.110160
الاتاحة: https://hdl.handle.net/1983/828cbafc-1da2-4506-99a9-ae8f352883e3
https://research-information.bris.ac.uk/en/publications/828cbafc-1da2-4506-99a9-ae8f352883e3
https://doi.org/10.1016/j.jfa.2023.110160
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.2A0EB297
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.jfa.2023.110160