When topic models disagree: keyphrase extraction with mulitple topic models

التفاصيل البيبلوغرافية
العنوان: When topic models disagree: keyphrase extraction with mulitple topic models
المؤلفون: Sterckx, Lucas, Demeester, Thomas, Deleu, Johannes, Develder, Chris
المصدر: WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB ; ISBN: 978-1-4503-3473-0
سنة النشر: 2015
المجموعة: Ghent University Academic Bibliography
مصطلحات موضوعية: Technology and Engineering, IBCN
الوصف: We explore how the unsupervised extraction of topic-related keywords benefits from combining multiple topic models. We show that averaging multiple topic models, inferred from different corpora, leads to more accurate keyphrases than when using a single topic model and other state-of-the-art techniques. The experiments confirm the intuitive idea that a prerequisite for the significant benefit of combining multiple models is that the models should be sufficiently different, i.e., they should provide distinct contexts in terms of topical word importance.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
ردمك: 978-1-4503-3473-0
1-4503-3473-3
Relation: https://biblio.ugent.be/publication/5974210; http://hdl.handle.net/1854/LU-5974210; http://doi.org/10.1145/2740908.2742731; https://biblio.ugent.be/publication/5974210/file/5974211
DOI: 10.1145/2740908.2742731
الاتاحة: https://biblio.ugent.be/publication/5974210
http://hdl.handle.net/1854/LU-5974210
https://doi.org/10.1145/2740908.2742731
https://biblio.ugent.be/publication/5974210/file/5974211
Rights: No license (in copyright) ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.28C8027
قاعدة البيانات: BASE
الوصف
ردمك:9781450334730
1450334733
DOI:10.1145/2740908.2742731