Acoustic Model Adaptation from Raw Waveforms with SincNet

التفاصيل البيبلوغرافية
العنوان: Acoustic Model Adaptation from Raw Waveforms with SincNet
المؤلفون: Fainberg, Joachim, Klejch, Ondrej, Loweimi, Erfan, Bell, Peter, Renals, Steve
بيانات النشر: Zenodo
سنة النشر: 2019
المجموعة: Zenodo
مصطلحات موضوعية: Acoustic model adaptation, children's speech, raw waveform, SincNet
الوصف: Raw waveform acoustic modelling has recently gained interest due to neural networks’ ability to learn feature extraction, and the potential for finding better representations for a given scenario than hand-crafted features. SincNet has been proposed to reduce the number of parameters required in rawwaveform modelling, by restricting the filter functions, rather than having to learn every tap of each filter. We study the adaptation of the SincNet filter parameters from adults’ to children’s speech, and show that the parameterisation of the SincNet layer is well suited for adaptation in practice: we can efficiently adapt with a very small number of parameters, producing error rates comparable to techniques using orders of magnitude more parameters.
نوع الوثيقة: conference object
اللغة: English
Relation: https://zenodo.org/communities/eu; https://doi.org/10.5281/zenodo.4059344; https://doi.org/10.5281/zenodo.4059345; oai:zenodo.org:4059345
DOI: 10.5281/zenodo.4059345
الاتاحة: https://doi.org/10.5281/zenodo.4059345
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.27536B2E
قاعدة البيانات: BASE