Academic Journal

The role of interleukin 17 in the pathogenesis of rheumatoid arthritis. Are there any prospects for the use of IL-17 inhibitors? ; Роль интерлейкина 17 в патогенезе ревматоидного артрита. Есть ли перспективы применения ингибиторов ИЛ-17?

التفاصيل البيبلوغرافية
العنوان: The role of interleukin 17 in the pathogenesis of rheumatoid arthritis. Are there any prospects for the use of IL-17 inhibitors? ; Роль интерлейкина 17 в патогенезе ревматоидного артрита. Есть ли перспективы применения ингибиторов ИЛ-17?
المؤلفون: E. L. Nasonov, A. S. Avdeeva, T. V. Korotaeva, T. V. Dubinina, Ju. V. Usacheva, Е. Л. Насонов, А. С. Авдеева, Т. В. Коротаева, Т. В. Дубинина, Ю. В. Усачева
المصدر: Rheumatology Science and Practice; Vol 61, No 2 (2023); 165-180 ; Научно-практическая ревматология; Vol 61, No 2 (2023); 165-180 ; 1995-4492 ; 1995-4484
بيانات النشر: IMA-PRESS, LLC
سنة النشر: 2023
المجموعة: Rheumatology Science and Practice (E-Journal) / Научно-практическая ревматология
مصطلحات موضوعية: моноклональные антитела к ИЛ-17, cytokines, interleukin 17, monoclonal antibodies to IL-17, цитокины, интерлейкин 17
الوصف: Rheumatoid arthritis (RA) is an immunoinflammatory rheumatic disease (IMRI) characterized by chronic erosive arthritis and systemic damage to internal organs, leading to early disability and reduced life expectancy in patients. Thanks to the progress in the study of the mechanisms of the development of the IVRI and industrial biotechnology, new anti-inflammatory drugs have been created, the use of which has significantly increased the effectiveness of the pharmacotherapy of RA. However, the possibilities of pharmacotherapy for RA are limited, since all biologics, regardless of the mechanism of action, have approximately the same effectiveness in achieving remission. It is believed that the relatively unsatisfactory results of RA therapy are due to the heterogeneity of the mechanisms of inflammation and pain. The significance of the Th17 type of immune response in the pathogenesis of RA, the results of controlled studies of IL-17 inhibitors, and the advisability of further studying the effectiveness of these drugs in patients with certain RA phenotypes are discussed. ; Ревматоидный артрит (РА) – иммуновоспалительное ревматическое заболевание (ИВРЗ), характеризующееся хроническим эрозивным артритом и системным поражением внутренних органов, приводящее к ранней инвалидности и сокращению продолжительности жизни пациентов. Благодаря прогрессу в изучении механизмов развития ИВРЗ и промышленной биотехнологии были созданы новые противовоспалительные лекарственные средства, применение которых позволило существенно повысить эффективность фармакотерапии РА. Тем не менее, возможности фармакотерапии РА ограничены. Парадоксально, но все генно-инженерные биологические препараты (ГИБП) независимо от механизма действия обладают примерно одинаковой эффективностью в отношении достижения ремиссии. Полагают, что относительно не удовлетворительные результаты терапии РА обусловлены гетерогенностью механизмов воспаления и боли. Обсуждаются значение Th17-типа иммунного ответа в патогенезе РА, результаты контролируемых исследований ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
Relation: https://rsp.mediar-press.net/rsp/article/view/3319/2272; Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4: 18001. doi:10.1038/nrdp.2018.1; McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-2219. doi:10.1056/NEJMra1004965; Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi:10.14412/1995-4484-2017-277-294; Насонов ЕЛ (ред.). Генно-инженерные биологические препараты в лечении ревматоидного артрита. М.:ИМА-ПРЕСС;2013.; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi:10.14412/1995-4484-2017-409-419; Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi:10.1136/annrheumdis-2017-211555; Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi:10.1136/ard.2009.123919; Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685-699. doi:10.1136/annrheumdis-2019-216655; Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2021;73(7):924-939. doi:10.1002/acr.24596; Winthrop KL, Isaacs JD, Mease PJ, Boumpas DT, Baraliakos X, Gottenberg JE, et al. Unmet need in rheumatology: Reports from the Advances in Targeted Therapies meeting, 2022. Ann Rheum Dis. 2023 Jan 26:ard-2022-223528. doi:10.1136/ard-2022-223528; Ajeganova S, Huizinga T. Sustained remission in rheumatoid arthritis: Latest evidence and clinical considerations. Ther Adv Musculoskelet Dis. 2017;9(10):249-262. doi:10.1177/1759720X17720366; Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276-289. doi:10.1038/nrrheum.2015.8; Zhao J, Guo S, Schrodi SJ, He D. Molecular and cellular heterogeneity in rheumatoid arthritis: Mechanisms and clinical implications. Front Immunol. 2021;12:790122. doi:10.3389/fimmu.2021.790122; Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-2470.e5. doi:10.1016/j.celrep.2019.07.091; Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, Bombardieri M, et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann Rheum Dis. 2019;78(6):761-772. doi:10.1136/annrheumdis-2018-214539; Rivellese F, Surace AEA, Goldmann K, Sciacca E, Çubuk C, Giorli G, et al.; R4RA collaborative group. Rituximab versus tocilizumab in rheumatoid arthritis: Synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat Med. 2022;28(6):1256-1268. doi:10.1038/s41591-022-01789-0; Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 2018;30(2):207-214. doi:10.1097/BOR.0000000000000470; Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The key comorbidities in patients with rheumatoid arthritis: A narrative review. J Clin Med. 2021;10(3):509. doi:10.3390/jcm10030509; Aletaha D. Precision medicine and management of rheumatoid arthritis. J Autoimmun. 2020;110:102405. doi:10.1016/j.jaut.2020.102405; Sebastiani M, Vacchi C, Manfredi A, Cassone G. Personalized medicine and machine learning: A roadmap for the future. J Clin Med. 2022;11(14):4110. doi:10.3390/jcm11144110; Lin CMA, Cooles FAH, Isaacs JD. Precision medicine: The precision gap in rheumatic disease. Nat Rev Rheumatol. 2022;18(12):725-733. doi:10.1038/s41584-022-00845-w; Pitzalis C, Choy EHS, Buch MH. Transforming clinical trials in rheumatology: Towards patient-centric precision medicine. Nat Rev Rheumatol. 2020;16(10):590-599. doi:10.1038/s41584-020-0491-4; Heutz J, de Jong PHP. Possibilities for personalised medicine in rheumatoid arthritis: Hype or hope. RMD Open. 2021; 7:e001653. doi:10.1136/rmdopen-2021-001653; Mucke J, Krusche M, Burmester GR. A broad look into the future of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2022;14:1759720X221076211. doi:10.1177/1759720X221076211; Nagy G, Roodenrijs NMT, Welsing PMJ, Kedves M, Hamar A, van der Goes MC, et al. EULAR points to consider for the management of difficult-to-treat rheumatoid arthritis. Ann Rheum Dis. 2022;81(1):20-33. doi:10.1136/annrheumdis-2021-220973; Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi:10.1136/rmdopen-2022-002387; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi:10.14412/1995-4484-2018-263-271; Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110-114. doi:10.1038/nature20810; Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, et al. The double game played by Th17 cells in infection: Host defense and immunopathology. Pathogens. 2022;11(12):1547. doi:10.3390/pathogens11121547; Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi:10.1038/s41577-022-00746-9; Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-76. doi:10.1038/nrd3794; Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415-429. doi:10.1038/nrrheum.2015.53; Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научно-практическая ревматология. 2019;57(4):400-406. doi:10.14412/1995-4484-2019-400-406; van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69-81. doi:10.1016/j.jaut.2017.12.006; Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62. doi:10.1007/s00281-022-00912-0; McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi:10.1016/j.immuni.2019.03.021; Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15(8):491-501. doi:10.1038/s41584-019-0243-5; Robert M, Miossec P, Hot A. The Th17 pathway in vascular inflammation: Culprit or consort? Front Immunol. 2022;13:888763. doi:10.3389/fimmu.2022.888763; Jiang X, Zhou R, Zhang Y, Zhu T, Li Q, Zhang W. Interleukin-17 as a potential therapeutic target for chronic pain. Front Immunol. 2022;13:999407. doi:10.3389/fimmu.2022.999407; Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. doi:10.14412/1995-4484-2014-430-437; Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-677. doi:10.1016/j.autrev.2013.12.004; Miossec P. Local and systemic effects of IL-17 in joint inflammation: A historical perspective from discovery to targeting. Cell Mol Immunol. 2021;18(4):860-865. doi:10.1038/s41423-021-00644-5; Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019;5:364. doi:10.3389/fmed.2018.00364; Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med. 2020;217(3):e20192048. doi:10.1084/jem.20192048; Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med. 2020;217(1):e20191123. doi:10.1084/jem.20191123; Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi:10.1007/s00281-019-00733-8; Pöllinger B, Junt T, Metzler B, Walker UA, Tyndall A, Allard C, et al. Th17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans. J Immunol. 2011;186(4):2602-2612. doi:10.4049/jimmunol.1003370; Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171(11):6173-6177. doi:10.4049/jimmunol.171.11.6173; Plater-Zyberk C, Joosten LA, Helsen MM, Koenders MI, Baeuerle PA, van den Berg WB. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis. 2009;68(5):721-728. doi:10.1136/ard.2007.085431; Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004;50(2):650-659. doi:10.1002/art.20001; Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 2002;46(3):802-805. doi:10.1002/art.10173; Chao CC, Chen SJ, Adamopoulos IE, Davis N, Hong K, Vu A, et al. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity. 2011;44(3):243-252. doi:10.3109/08916934.2010.517815; Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol. 2005;167(1):141-149. doi:10.1016/S0002-9440(10)62961-6; Ishiguro A, Akiyama T, Adachi H, Inoue J, Nakamura Y. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models. Arthritis Rheum. 2011;63(2):455-466. doi:10.1002/art.30108; Zhang Y, Ren G, Guo M, Ye X, Zhao J, Xu L, et al. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2013;15(2):199-205. doi:10.1016/j.intimp.2012.12.010; Li Q, Ren G, Xu L, Wang Q, Qi J, Wang W, et al. Therapeutic efficacy of three bispecific antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2014;21(1):119-127. doi:10.1016/j.intimp.2014.04.018; Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963-970. doi:10.1002/1529-0131(199905)42:53.0.CO;2-E; Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998;161(1):409-414.; Chabaud M, Page G, Miossec P. Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: Regulation by soluble receptors and Th2 cytokines. J Immunol. 2001;167(10):6015-6020. doi:10.4049/jimmunol.167.10.6015; Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000; 12(7):1092-1099. doi:10.1006/cyto.2000.0681; Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis. 2011; 70(5):727-732. doi:10.1136/ard.2010.143768; Hot A, Zrioual S, Toh ML, Lenief V, Miossec P. IL-17A-versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes. Ann Rheum Dis. 2011; 70(2):341-348. doi:10.1136/ard.2010.132233; Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004; 6(2):R120-R128. doi:10.1186/ar1038; Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol. 2008; 180(1):655-663. doi:10.4049/jimmunol.180.1.655; Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol. 2013; 53(3):227-236. doi:10.1016/j.molimm.2012.08.018; Hot A, Zrioual S, Lenief V, Miossec P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis. 2012; 71(8):1393-1401. doi:10.1136/annrheumdis-2011-200867; Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: Synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther. 2009; 11(4):R113. doi:10.1186/ar2772; Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010; 12(1):R29. doi:10.1186/ar2936; Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006; 203(12):2673-2682. doi:10.1084/jem.20061775; Lavocat F, Maggi L, Annunziato F, Miossec P. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes. Cytokine. 2016; 88:241-250. doi:10.1016/j.cyto.2016.09.019; Lavocat F, Osta B, Miossec P. Increased sensitivity of rheumatoid synoviocytes to Schnurri-3 expression in TNF-α and IL-17A induced osteoblastic differentiation. Bone. 2016; 87:89-96. doi:10.1016/j.bone.2016.04.008; Dharmapatni AA, Smith MD, Crotti TN, Holding CA, Vincent C, Weedon HM, et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res Ther. 2011;13(2):R51. doi:10.1186/ar3294; Park JS, Park MK, Lee SY, Oh HJ, Lim MA, Cho WT, et al. TWEAK promotes the production of interleukin-17 in rheumatoid arthritis. Cytokine. 2012;60(1):143-149. doi:10.1016/j.cyto.2012.06.285; Daoussis D, Andonopoulos AP, Liossis SN. Wnt pathway and IL-17: novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin Arthritis Rheum. 2010;39(5):369-383. doi:10.1016/j.semarthrit.2008.10.008; Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 2006; 14(4):345-352. doi:10.1016/j.joca.2005.10.004; Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60(12):3602-3612. doi:10.1002/art.24999; Lee SY, Kwok SK, Son HJ, Ryu JG, Kim EK, Oh HJ, et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res Ther. 2013;15(1):R31. doi:10.1186/ar4179; Benedetti G, Bonaventura P, Lavocat F, Miossec P. IL-17A and TNF-α increase the expression of the antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes. Front Immunol. 2016; 7:254. doi:10.3389/fimmu.2016.00254; Toh ML, Gonzales G, Koenders MI, Tournadre A, Boyle D, Lubberts E, et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS One. 2010;5(10):e13416. doi:10.1371/journal.pone.0013416; Kim EK, Kwon JE, Lee SY, Lee EJ, Kim DS, Moon SJ, et al. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis. 2017;8(1):e2565. doi:10.1038/cddis.2016.490; Eljaafari A, Tartelin ML, Aissaoui H, Chevrel G, Osta B, Lavocat F, et al. Bone marrow-derived and synovium-derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: Contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2147-2157. doi:10.1002/art.34391; Noack M, Ndongo-Thiam N, Miossec P. Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Res Ther. 2016;18:148. doi:10.1186/s13075-016-1046-6; Metawi SA, Abbas D, Kamal MM, Ibrahim MK. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol. 2011;30(9):1201-1207. doi:10.1007/s10067-011-1737-y; Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE, et al. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 2011;13(5):R150. doi:10.1186/ar3466; Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000;164(5):2832-2838. doi:10.4049/jimmunol.164.5.2832; Misra S, Mondal S, Chatterjee S, Dutta S, Sinha D, Bhattacharjee D, et al. Interleukin-17 as a predictor of subclinical synovitis in the remission state of rheumatoid arthritis. Cytokine. 2022;153:155837. doi:10.1016/j.cyto.2022.155837; Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: Application to destruction in rheumatoid arthritis. Ann Rheum Dis. 2015;74(8):1629-1631. doi:10.1136/annrheumdis-2014-207110; Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345-1352. doi:10.1172/JCI5703; Siloşi I, Boldeanu MV, Cojocaru M, Biciuşcă V, Pădureanu V, Bogdan M, et al. The relationship of cytokines IL-13 and IL-17 with autoantibodies profile in early rheumatoid arthritis. J Immunol Res. 2016;2016:3109135. doi:10.1155/2016/3109135; Costa CM, Santos MATD, Pernambuco AP. Elevated levels of inflammatory markers in women with rheumatoid arthritis. J Immunoassay Immunochem. 2019;40(5):540-554. doi:10.1080/15321819.2019.1649695; Schofield C, Fischer SK, Townsend MJ, Mosesova S, Peng K, Setiadi AF, et al. Characterization of IL-17AA and IL-17FF in rheumatoid arthritis and multiple sclerosis. Bioanalysis. 2016;8(22):2317-2327. doi:10.4155/bio-2016-0207; Lee YH, Bae SC. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: A meta-analysis. Postgrad Med J. 2017;93(1102):465-471. doi:10.1136/postgradmedj-2016-134637; Honorati MC, Meliconi R, Pulsatelli L, Canè S, Frizziero L, Facchini A. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford). 2001;40(5):522-527. doi:10.1093/rheumatology/40.5.522; Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006;54(4):1122-1131. doi:10.1002/art.21749; Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7(1):R139-R148. doi:10.1186/ar1470; Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182(5):3112-3120. doi:10.4049/jimmunol.0801967; Lee K, Min HK, Koh SH, Lee SH, Kim HR, Ju JH, et al. Prognostic signature of interferon-γ and interleurkin-17A in early rheumatoid arthritis. Clin Exp Rheumatol. 2022;40(5):999-1005. doi:10.55563/clinexprheumatol/mkbvch; Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(2):383-391. doi:10.1002/art.27186; Raza K, Falciani F, Curnow SJ, Ross EJ, Lee CY, Akbar AN, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther. 2005;7(4):R784-R795. doi:10.1186/ar1733; van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63(1):73-83. doi:10.1002/art.30093; Kotake S, Nanke Y, Yago T, Kawamoto M, Kobashigawa T, Yamanaka H. Elevated ratio of Th17 cell-derived Th1 cells (CD161(+)Th1 cells) to CD161(+)Th17 cells in peripheral blood of early-onset rheumatoid arthritis patients. Biomed Res Int. 2016;2016:4186027. doi:10.1155/2016/4186027; Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol. 2001;19:163-196. doi:10.1146/annurev.immunol.19.1.163; Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593-2603. doi:10.1084/jem.183.6.2593; Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135-4141. doi:10.4049/jimmunol.179.6.4135; Hartupee J, Liu C, Novotny M, Sun D, Li X, Hamilton TA. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol. 2009;182(3):1660-1666. doi:10.4049/jimmunol.182.3.1660; Herjan T, Hong L, Bubenik J, Bulek K, Qian W, Liu C, et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat Immunol. 2018;19(4):354-365. doi:10.1038/s41590-018-0071-9; Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol. 2018;193(2):221-233. doi:10.1111/cei.13140; Dayer JM. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii3-ii10. doi:10.1093/rheumatology/keg326; Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001;3(3):168-177. doi:10.1186/ar294; Kehlen A, Pachnio A, Thiele K, Langner J. Gene expression induced by interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther. 2003;5(4):R186-R192. doi:10.1186/ar762; Wu Q, Wang Y, Wang Q, Yu D, Wang Y, Song L, et al. The bispecific antibody aimed at the vicious circle of IL-1β and IL-17A, is beneficial for the collagen-induced rheumatoid arthritis of mice through NF-κB signaling pathway. Immunol Lett. 2016;179:68-79. doi:10.1016/j.imlet.2016.09.001; Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A promising target in inflammation and autoimmunity. Immunotargets Ther. 2020;9:225-240. doi:10.2147/ITT.S262566; van Nieuwenhuijze AE, van de Loo FA, Walgreen B, Bennink M, Helsen M, van den Bersselaar L, et al. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: Rationale for combination therapy in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):163. doi:10.1186/s13075-015-0683-5; Dakin SG, Coles M, Sherlock JP, Powrie F, Carr AJ, Buckley CD. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nat Rev Rheumatol. 2018;14(12):714-726. doi:10.1038/s41584-018-0112-7; Liu D, Cao T, Wang N, Liu C, Ma N, Tu R, et al. IL-25 attenuates rheumatoid arthritis through suppression of Th17 immune responses in an IL-13-dependent manner. Sci Rep. 2016;6:36002. doi:10.1038/srep36002; Lavocat F, Ndongo-Thiam N, Miossec P. Interleukin-25 produced by synoviocytes has anti-inflammatory effects by acting as a receptor antagonist for interleukin-17A function. Front Immunol. 2017;8:647. doi:10.3389/fimmu.2017.00647; Ndongo-Thiam N, Clement A, Pin JJ, Razanajaona-Doll D, Miossec P. Negative association between autoantibodies against IL-17, IL-17/anti-IL-17 antibody immune complexes and destruction in rheumatoid arthritis. Ann Rheum Dis. 2016;75(7):1420-1422. doi:10.1136/annrheumdis-2016-209149; Fischer JA, Hueber AJ, Wilson S, Galm M, Baum W, Kitson C, et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: Development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51-62. doi:10.1002/art.38896; Fleischmann RM, Wagner F, Kivitz AJ, Mansikka HT, Khan N, Othman AA, et al. Safety, tolerability, and pharmacodynamics of ABT-122, a tumor necrosis factor- and interleukin-17-targeted dual variable domain immunoglobulin, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(12):2283-2291. doi:10.1002/art.40319; Khatri A, Goss S, Jiang P, Mansikka H, Othman AA. Pharmacokinetics of ABT-122, a TNF-α- and IL-17A-targeted dual-variable domain immunoglobulin, in healthy subjects and patients with rheumatoid arthritis: Results from three phase I trials. Clin Pharmacokinet. 2018;57(5):613-623. doi:10.1007/s40262-017-0580-y; Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326-9334. doi:10.1074/jbc.M117.818559; Qi J, Kan F, Ye X, Guo M, Zhang Y, Ren G, et al. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int Immunopharmacol. 2012;14(4):770-778. doi:10.1016/j.intimp.2012.10.005; Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019;11(6):1175-1190. doi:10.1080/19420862.2019.1624463; Blanco FJ, Möricke R, Dokoupilova E, Codding C, Neal J, Andersson M, et al. Secukinumab in active rheumatoid arthritis: A phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 2017;69(6):1144-1153. doi:10.1002/art.40070; Tahir H, Deodhar A, Genovese M, Takeuchi T, Aelion J, Van den Bosch F, et al. Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther. 2017;4(2):475-488. doi:10.1007/s40744-017-0086-y; Burmester GR, Durez P, Shestakova G, Genovese MC, Schulze-Koops H, Li Y, et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology (Oxford). 2016;55(1):49-55. doi:10.1093/rheumatology/kev258; Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014;66(7):1693-1704. doi:10.1002/art.38617; Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol. 2015;42(6):912-919. doi:10.3899/jrheum.141271; Glatt S, Taylor PC, McInnes IB, Schett G, Landewé R, Baeten D, et al. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: A proof-of-concept study. Ann Rheum Dis. 2019;78(8):1033-1040. doi:10.1136/annrheumdis-2018-214943; Genovese MC, Weinblatt ME, Aelion JA, Mansikka HT, Peloso PM, Chen K, et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: A randomized, double-blind study. Arthritis Rheumatol. 2018;70(11):1710-1720. doi:10.1002/art.40580; Smolen JS, Agarwal SK, Ilivanova E, Xu XL, Miao Y, Zhuang Y, et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis. 2017;76(5):831-839. doi:10.1136/annrheumdis-2016-209831; Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al.; Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107; Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: A phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863-869. doi:10.1136/annrheumdis-2012-201601; Strand V, Kosinski M, Gnanasakthy A, Mallya U, Mpofu S. Secukinumab treatment in rheumatoid arthritis is associated with incremental benefit in the clinical outcomes and HRQoL improvements that exceed minimally important thresholds. Health Qual Life Outcomes. 2014;12:31. doi:10.1186/1477-7525-12-31; Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414-421. doi:10.3899/jrheum.130637; Tlustochowicz W, Rahman P, Seriolo B, Krammer G, Porter B, Widmer A, et al. Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: Results from a randomized phase II study. J Rheumatol. 2016;43(3):495-503. doi:10.3899/jrheum.150117; de Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-3626. doi:10.1016/j.febslet.2011.03.035; Koenders MI, Marijnissen RJ, Joosten LA, Abdollahi-Roodsaz S, Di Padova FE, van de Loo FA, et al. T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization. Arthritis Rheum. 2012;64(6): 1762-1770. doi:10.1002/art.34352; Huang Y, Fan Y, Liu Y, Xie W, Zhang Z. Efficacy and safety of secukinumab in active rheumatoid arthritis with an inadequate response to tumor necrosis factor inhibitors: A meta-analysis of phase III randomized controlled trials. Clin Rheumatol. 2019;38(10):2765-2776. doi:10.1007/s10067-019-04595-1; Dokoupilová E, Aelion J, Takeuchi T, Malavolta N, Sfikakis PP, Wang Y, et al. Secukinumab after anti-tumour necrosis factor-α therapy: A phase III study in active rheumatoid arthritis. Scand J Rheumatol. 2018;47(4):276-281. doi:10.1080/03009742.2017.1390605; Genovese MC, Weinblatt ME, Mease PJ, Aelion JA, Peloso PM, Chen K, et al. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: Open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology (Oxford). 2018;57(11):1972-1981. doi:10.1093/rheumatology/key173; Georgantas RW III, Ruzek M, Davis JW, Hong F, Asque E, Idler K, et al. Genomic and epigenetic bioinformatics demonstrate dual TNF-α and IL17A target engagement by ABT-122, and suggest mainly TNF-α-mediated relative target contribution to drug response in MTX-IR rheumatoid arthritis patients. Arthritis Rheumatol. 2016;68(Suppl 10). URL: https://acrabstracts.org/abstract/genomic-and-epigenetic-bioinformatics-demonstrate-dual-tnf-%ce%b1-and-il17a-target-engagement-by-abt-122-and-suggest-mainly-tnf-%ce%b1-mediated-relative-target-contribution-to-drug-response-i/. (Accessed: DD Month 2023).; Mease PJ, Genovese MC, Weinblatt ME, Peloso PM, Chen K, Othman AA, et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 2018;70(11):1778-1789. doi:10.1002/art.40579; Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114-1123. doi:10.1056/NEJMoa050524; Smolen JS, Kay J, Doyle M, Landewé R, Matteson EL, Gaylis N, et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumor necrosis factor α inhibitors: Findings with up to five years of treatment in the multicenter, randomized, double-blind, placebo-controlled, phase 3 GO-AFTER study. Arthritis Res Ther. 2015;17(1):14. doi:10.1186/s13075-015-0516-6; Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67(11):1516-1523. doi:10.1136/ard.2008.092932; Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al.; REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54(9):2793-2806. doi:10.1002/art.22025; Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013;19(7):822-824. doi:10.1038/nm.3260; McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis – shaping the immunological landscape. Nat Rev Rheumatol. 2016;12(1):63-68. doi:10.1038/nrrheum.2015.171; Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi:10.1056/NEJMra1909094; He C, Xue C, Zhu G, Kang P. Efficacy and safety of interleukin-17 inhibitors in the treatment of chronic rheumatic diseases: A combined and updated meta-analysis. J Clin Pharm Ther. 2021;46(4):895-906. doi:10.1111/jcpt.13416; Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in rheumatic disease: Therapeutics help to elucidate disease mechanisms. Curr Rheumatol Rep. 2022;24(10):310-320. doi:10.1007/s11926-022-01084-4; van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH, et al. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: Possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther. 2014;16(4):426. doi:10.1186/s13075-014-0426-z; Gullick NJ, Evans HG, Church LD, Jayaraj DM, Filer A, Kirkham BW, et al. Linking power Doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLoS One. 2010;5(9):e12516. doi:10.1371/journal.pone.0012516; Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther. 2011;13(4):R126. doi:10.1186/ar3431; Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis. 2012;71(10):1741-1748. doi:10.1136/annrheumdis-2011-201024; Hull DN, Williams RO, Pathan E, Alzabin S, Abraham S, Taylor PC. Anti-tumour necrosis factor treatment increases circulating T helper type 17 cells similarly in different types of inflammatory arthritis. Clin Exp Immunol. 2015;181(3):401-406. doi:10.1111/cei.12626; Hull DN, Cooksley H, Chokshi S, Williams RO, Abraham S, Taylor PC. Increase in circulating Th17 cells during anti-TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):303. doi:10.1186/s13075-016-1197-5; Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, et al. The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int. 2010;30(12):1553-1557. doi:10.1007/s00296-009-1179-x; Aerts NE, De Knop KJ, Leysen J, Ebo DG, Bridts CH, Weyler JJ, et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford). 2010;49(12):2264-2272. doi:10.1093/rheumatology/keq224; Basdeo SA, Cluxton D, Sulaimani J, Moran B, Canavan M, Orr C, et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J Immunol. 2017;198(6):2249-2259. doi:10.4049/jimmunol.1600737; Millier MJ, Fanning NC, Frampton C, Stamp LK, Hessian PA. Plasma interleukin-23 and circulating IL-17A+IFNγ+ ex-Th17 cells predict opposing outcomes of anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther. 2022;24(1):57. doi:10.1186/s13075-022-02748-3; Дибров ДА. АЦЦП-негативный ревматоидный артрит – клинические и иммунологические особенности. Научно-практическая ревматология. 2022;60(3):314-326. doi:10.47360/1995-4484-2022-314-326; Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis: from immune machanisms to clinical rtanskation. eBioMed. 2022;m83:104233. doi: 10/10/1016/jebiom.2022.104233; Myasoedova E, Davis J, Matteson EL, Crowson CS. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985–2014. Ann Rheum Dis. 202079(4):440-444. doi:10.1136/annrheumdis-2019-216694; Barra L, Pope JE, Orav JE, Boire G, Haraoui B, Hitchon C, et al.; CATCH Investigators. Prognosis of seronegative patients in a large prospective cohort of patients with early inflammatory arthritis. J Rheumatol. 2014;41(12):2361-2369. doi:10.3899/jrheum.140082; Carbonell-Bobadilla N, Soto-Fajardo C, Amezcua-Guerra LM, Batres-Marroquín AB, Vargas T, Hernández-Diazcouder A, et al. Patients with seronegative rheumatoid arthritis have a different phenotype than seropositive patients: A clinical and ultrasound study. Front Med (Lausanne). 2022;9:978351. doi:10.3389/fmed.2022.978351; Nordberg LB, Lillegraven S, Lie E, Aga AB, Olsen IC, Hammer HB, et al.; and the ARCTIC working group. Patients with seronegative RA have more inflammatory activity compared with patients with seropositive RA in an inception cohort of DMARD-naïve patients classified according to the 2010 ACR/EULAR criteria. Ann Rheum Dis. 2017;76(2):341-345. doi:10.1136/annrheumdis-2015-208873; Choi S, Lee KH. Clinical management of seronegative and seropositive rheumatoid arthritis: A comparative study. PLoS One. 2018;13(4):e0195550. doi:10.1371/journal.pone.0195550; Qu C-H, Hou Y, Bi YF, Han QR, Jiao QR, Zou QF. Diagnostic vakues of serum IL-10 and IL-17 in rheumatoid arthritis and their correlation with serum 14-304g prorein. Eur Rev Med Pharmacol Scu. 2019;23:1898-1906.; Mease PJ, Bhutani MK, Hass S, Yi E, Hur P, Kim N. Comparison of clinical manifestations in rheumatoid arthritis vs. spondyloarthritis: A systematic literature review. Rheumatol Ther. 2022;9(2):331-378. doi:10.1007/s40744-021-00407-8; Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open. 2018;4(2):e000656. doi:10.1136/rmdopen-2018-000656; Paalanen K, Puolakka K, Nikiphorou E, Hannonen P, Sokka T. Is seronegative rheumatoid arthritis true rheumatoid arthritis? A nationwide cohort study. Rheumatology (Oxford). 2021;60(5):2391-2395. doi:10.1093/rheumatology/keaa623; Osman N, Mohamed FI, Hassan AA. Kamel SR, Ahmed SS. Frequency of inflammatory back pain and sacroiliitis in Egyptian patients with rheumatoid arthritis. Egypt J Radiol Nucl Med. 2019;50:25. doi:10.1186/s43055-019-0019-6; Can G, Solmaz D, Binicier O, Akar S, Birlik M, Soysal O, et al. High frequency of inflammatory back pain and other features of spondyloarthritis in patients with rheumatoid arthritis. Rheumatol Int. 2013;33(5):1289-1293. doi:10.1007/s00296-012-2553-7; Flores-Robles BJ, Labrador-Sánchez E, Andrés-Trasahedo E, Pinillos-Aransay V, Joven-Zapata MY, Torrecilla Lerena L, et al. Concurrence of rheumatoid arthritis and ankylosing spondylitis: Analysis of seven cases and literature review. Case Rep Rheumatol. 2022;2022:8500567. doi:10.1155/2022/8500567; Zhao GW, Huang LF, Li D, Zeng Y. Ankylosing spondylitis coexists with rheumatoid arthritis and Sjögren’s syndrome: A case report with literature review. Clin Rheumatol. 2021;40(5):2083-2086. doi:10.1007/s10067-020-05350-7; Isaacs JD, Cohen SB, Emery P, Tak PP, Wang J, Lei G, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: A meta-analysis. Ann Rheum Dis. 2013;72(3):329-336. doi:10.1136/annrheumdis-2011-201117; Gottenberg JE, Courvoisier DS, Hernandez MV, Iannone F, Lie E, Canhão H, et al. Brief report: Association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: Results from the pan-European registry analysis. Arthritis Rheumatol. 2016;68(6):1346-1352. doi:10.1002/art.39595; Harrold LR, Litman HJ, Connolly SE, Kelly S, Hua W, Alemao E, et al. Effect of anticitrullinated protein antibody status on response to abatacept or antitumor necrosis factor-α therapy in patients with rheumatoid arthritis: A US national observational study. J Rheumatol. 2018;45(1):32-39. doi:10.3899/jrheum.170007; Mulhearn B, Barton A, Viatte S. Using the immunophenotype to predict response to biologic drugs in rheumatoid arthritis. J Pers Med. 2019;9(4):46. doi:10.3390/jpm9040046; Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al.; BRAGGSS. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):69-74. doi:10.1136/ard.2007.084715; https://rsp.mediar-press.net/rsp/article/view/3319
DOI: 10.47360/1995-4484-2023-165-180
الاتاحة: https://rsp.mediar-press.net/rsp/article/view/3319
https://doi.org/10.47360/1995-4484-2023-165-180
Rights: Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.270A2510
قاعدة البيانات: BASE
الوصف
DOI:10.47360/1995-4484-2023-165-180