Academic Journal
Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory
العنوان: | Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory |
---|---|
المؤلفون: | Mkhitaryan, S M, Mkrtchyan, M S, Kanetsyan, E G |
المصدر: | The Quarterly Journal of Mechanics and Applied Mathematics ; volume 73, issue 1, page 51-75 ; ISSN 0033-5614 1464-3855 |
بيانات النشر: | Oxford University Press (OUP) |
سنة النشر: | 2020 |
مصطلحات موضوعية: | Applied Mathematics, Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics |
الوصف: | Summary The exact solutions of a class of hypersingular integral equations with kernels $\left( {s-x} \right)^{-2}$, $\left( {\sin \frac{s-x}{2}} \right)^{-2}$, $\left( {\sinh \frac{s-x}{2}} \right)^{-2},\cos \frac{s-x}{2}\left( {\sin \frac{s-x}{2}} \right)^{-2}$, $\cosh \frac{s-x}{2}\left( {\sinh \frac{s-x}{2}} \right)^{-2}$ are obtained where the integrals must be interpreted as Hadamard finite-part integrals. Problems of cracks in elastic bodies of various canonical forms under antiplane and plane deformations, where the crack edges are loaded symmetrically, lead to such equations. These problems, in turn, lead to mixed boundary value problems of the mathematical theory of elasticity for a half-plane, a circle, a strip and a wedge. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
DOI: | 10.1093/qjmam/hbz022 |
الاتاحة: | http://dx.doi.org/10.1093/qjmam/hbz022 http://academic.oup.com/qjmam/article-pdf/73/1/51/32528703/hbz022.pdf |
Rights: | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
رقم الانضمام: | edsbas.2462F134 |
قاعدة البيانات: | BASE |
DOI: | 10.1093/qjmam/hbz022 |
---|