Academic Journal

Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory

التفاصيل البيبلوغرافية
العنوان: Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory
المؤلفون: Mkhitaryan, S M, Mkrtchyan, M S, Kanetsyan, E G
المصدر: The Quarterly Journal of Mechanics and Applied Mathematics ; volume 73, issue 1, page 51-75 ; ISSN 0033-5614 1464-3855
بيانات النشر: Oxford University Press (OUP)
سنة النشر: 2020
مصطلحات موضوعية: Applied Mathematics, Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics
الوصف: Summary The exact solutions of a class of hypersingular integral equations with kernels $\left( {s-x} \right)^{-2}$, $\left( {\sin \frac{s-x}{2}} \right)^{-2}$, $\left( {\sinh \frac{s-x}{2}} \right)^{-2},\cos \frac{s-x}{2}\left( {\sin \frac{s-x}{2}} \right)^{-2}$, $\cosh \frac{s-x}{2}\left( {\sinh \frac{s-x}{2}} \right)^{-2}$ are obtained where the integrals must be interpreted as Hadamard finite-part integrals. Problems of cracks in elastic bodies of various canonical forms under antiplane and plane deformations, where the crack edges are loaded symmetrically, lead to such equations. These problems, in turn, lead to mixed boundary value problems of the mathematical theory of elasticity for a half-plane, a circle, a strip and a wedge.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1093/qjmam/hbz022
الاتاحة: http://dx.doi.org/10.1093/qjmam/hbz022
http://academic.oup.com/qjmam/article-pdf/73/1/51/32528703/hbz022.pdf
Rights: https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
رقم الانضمام: edsbas.2462F134
قاعدة البيانات: BASE