Academic Journal

APPLICATION OF TOTAL-REFLECTION X-RAY FLUORESCENCE SPECTROMETRY (TXRF) TO GEOLOGICAL OBJECTS: EXPERIENCE OF THE TXRF LABORATORY, CENTER FOR GEODYNAMICS AND GEOCHRONOLOGY ; ПРИМЕНЕНИЕ МЕТОДА РЕНТГЕНОФЛУОРЕСЦЕНТНОЙ СПЕКТРОМЕТРИИ С ПОЛНЫМ ВНЕШНИМ ОТРАЖЕНИЕМ (TXRF) К ГЕОЛОГИЧЕСКИМ ОБЪЕКТАМ: ОПЫТ ЛАБОРАТОРИИ TXRF (ЦКП «ГЕОДИНАМИКА И ГЕОХРОНОЛОГИЯ»)

التفاصيل البيبلوغرافية
العنوان: APPLICATION OF TOTAL-REFLECTION X-RAY FLUORESCENCE SPECTROMETRY (TXRF) TO GEOLOGICAL OBJECTS: EXPERIENCE OF THE TXRF LABORATORY, CENTER FOR GEODYNAMICS AND GEOCHRONOLOGY ; ПРИМЕНЕНИЕ МЕТОДА РЕНТГЕНОФЛУОРЕСЦЕНТНОЙ СПЕКТРОМЕТРИИ С ПОЛНЫМ ВНЕШНИМ ОТРАЖЕНИЕМ (TXRF) К ГЕОЛОГИЧЕСКИМ ОБЪЕКТАМ: ОПЫТ ЛАБОРАТОРИИ TXRF (ЦКП «ГЕОДИНАМИКА И ГЕОХРОНОЛОГИЯ»)
المؤلفون: A. S. Maltsev, G. V. Pashkova, А. С. Мальцев, Г. В. Пашкова
المساهمون: The research was performed using the equipment of the Centre for Geodynamics and Geochronology of the Institute of the Earth’s Crust SB RAS (grant 075-15-2021-682), Исследования выполнены на оборудовании Центра коллективного пользования «Геодинамика и геохронология» Института земной коры СО РАН (грант № 075-15-2021-682)
المصدر: Geodynamics & Tectonophysics; Том 13, № 2 (2022); 0601 ; Геодинамика и тектонофизика; Том 13, № 2 (2022); 0601 ; 2078-502X
بيانات النشر: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
سنة النشر: 2022
المجموعة: Geodynamics & Tectonophysics (E-Journal) / Геодинамика и тектонофизика
مصطلحات موضوعية: осадки, multi-elemental analysis, sample preparation, accuracy assessment, apatite, ores, nodules, ceramics, sediments, многоэлементный анализ, пробоподготовка, оценка точности, апатит, руды, конкреции, керамика
الوصف: Unlike conventional X-ray fluorescence spectrometry, the total-reflection X-ray fluorescence spectrometry is not a widespread and routine method for analyzing solid samples with mineral matrix, but it has a great potential for geochemical, geological, and archaeological studies. Rapid multi-elemental analysis of very small sample amounts can be performed by the internal standard method which does not require the matrix-matched reference materials. This is an undoubted advantage of the TXRF method over the conventional X-ray fluorescence method, especially if there is a limited available sample amount and a lack of well-characterized reference materials. This paper presents our experience with the application of TXRF spectrometry in the elemental analysis of apatite, ceramics, sediments, ores, and nodules. Special attention has been paid to the sample preparation procedure because it is one of the main sources of errors in the analysis. Preparing thin homogeneous specimen from the solid sample with a complex mineral matrix is not easy. Sample preparation strategy should be chosen considering the features of an analytical object, the content of the elements to be determined, and the accuracy required for a reliable interpretation. Consideration is being given to the examples of the preparation of a suspension for rapid analysis of ores and sediments, and to the original techniques of chemical decomposition for apatite and ceramics. ; В отличие от традиционной рентгенофлуоресцентной спектрометрии, рентгенофлуоресцентная спектрометрия с полным внешним отражением не является распространенным и рутинным методом анализа твердых образцов с минеральной матрицей, но имеет большой потенциал для геохимических, геологических и археологических исследований. Быстрый многоэлементный анализ очень малого количества образца может быть выполнен с помощью способа внутреннего стандарта, который не требует стандартных образцов для калибровки. Это несомненное преимущество метода TXRF по сравнению с традиционным рентгенофлуоресцентным ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
Relation: https://www.gt-crust.ru/jour/article/view/1437/634; Akhmetzhanov T.F., Pashkova G.V., Chubarov V.M., Labutin T.A., Popov A.M., 2021. Three Calibration Techniques Combined with Sample-Effective Design of Experiment Based on Latin Hypercube Sampling for Direct Detection of Lanthanides in REE-Rich Ores Using TXRF and WDXRF. Journal of Analytical Atomic Spectrometry 36 (1), 224–232. https://doi.org/10.1039/D0JA00264J.; Chubarov V.M., Pashkova G.V., Panteeva S.V., Amosova A.A., 2021. Multielement Analysis of Continental and Lacustrine Ferromanganese Nodules by WDXRF, TXRF, and ICP-MS Methods. Intercomparison Study and Accuracy Assessment. Applied Radiation and Isotopes 178, 109981. https://doi.org/10.1016/j.apradiso.2021.109981.; Compton A.H., 1923. CXVII. The Total Reflexion of X-Rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (270), 1121–1131. https://doi.org/10.1080/14786442308634208.; Klockenkämper R., von Bohlen A., 2015. Total-Reflection X-Ray Fluorescence Analysis and Related Methods. Wiley, Hoboken, USA, 552 p. https://doi.org/10.1002/9781118985953.; Maltsev A.S., Chuparina E.V., Pashkova G.V., Sokol’nikova J.V., Zarubina O.V., Shuliumova A.N., 2021a. Features of Sample Preparation Techniques in the Total-Reflection X-Ray Fluorescence Analysis of Tea Leaves. Food Chemistry 343, 128502. https://doi.org/10.1016/j.foodchem.2020.128502.; Maltsev A.S., Ivanov A.V., Chubarov V.M., Pashkova G.V., Panteeva S.V., Reznitskii L.Z., 2020. Development and Validation of a Method for Multielement Analysis of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Talanta 214, 120870. https://doi.org/10.1016/j.talanta.2020.120870.; Maltsev A.S., Ivanov A.V., Pashkova G.V., Marfin A.E., Bishaev Y.A., 2021b. New Prospects to the Multi-Elemental Analysis of Single Microcrystal of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 184, 106281. https://doi.org/10.1016/j.sab.2021.106281.; Maltsev A.S., Pashkova G.V., Fernández-Ruiz R., Demonterova E.I., Shuliumova A.N., Umarova N.N., Shergin D.L., Mukhamedova M.M., Chubarov V.M., Mikheeva E.A., 2021c. Characterization of Archaeological Ceramics from Eastern Siberia by Total-Reflection X-Ray Fluorescence Spectrometry and Principal Component Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 175, 106012. https://doi.org/10.1016/j.sab.2020.106012.; Maltsev A.S., Sharykina D.S., Chuparina E.V., Pashkova G.V., Revenko A.G., 2019a. Multielement Analysis of Tea by Total Reflection X-Ray Fluorescence Spectrometry. Analytics and Control 23 (2), 247–257. http://dx.doi.org/10.15826/analitika.2019.23.2.009.; Maltsev A.S., von Bohlen A., Yusupov R.A., Bakhteev S.A., 2019b. Evaluation of Analytical Capabilities of Total Reflection X-Ray Fluorescence Spectrometry for the Analysis of Drinks with Sucrose Matrix. Analytics and Control 23 (4), 483–493. http://dx.doi.org/10.15826/analitika.2019.23.4.009.; Maltsev A.S., Yusupov R.A., Bakhteev S.A., 2022. Overcoming Absorption Effects in the Determination of Light Elements in Beverages by Total‐Reflection X‐Ray Spectrometry. X-Ray Spectrometry. Special Issue Article, 1–8. https://doi.org/10.1002/xrs.3283.; Pashkova G.V., Aisueva T.S., Finkelshtein A.L., Cherkashina T.Y., Shchetnikov A.A., 2018a. Quantitative Approaches to the Determination of Elements in Lake Sediments by Total Reflection X-Ray Fluorescence. Microchemical Journal 143, 264–271. https://doi.org/10.1016/j.microc.2018.08.020.; Pashkova G.V., Aisueva T.S., Finkelshtein A.L., Ivanov E.V., Shchetnikov A.A., 2016. Analytical Approaches for Determination of Bromine in Sediment Core Samples by X-Ray Fluorescence Spectrometry. Talanta 160, 375–380. https://doi.org/10.1016/j.talanta.2016.07.059.; Pashkova G.V., Chubarov V.M., Akhmetzhanov T.F., Zhilicheva A.N., Mukhamedova M.M., Finkelshtein A.L., Belozerova O.Y., 2020. Total-Reflection X-Ray Fluorescence Spectrometry as a Tool for the Direct Elemental Analysis of Ores: Application to Iron, Manganese, Ferromanganese, Nickel-Copper Sulfide Ores and Ferromanganese Nodules. Spectrochimica Acta Part B: Atomic Spectroscopy 168, 105856. https://doi.org/10.1016/j.sab.2020.105856.; Pashkova G.V., Mukhamedova M.M., Chubarov V.M., Maltsev A.S., Amosova A.A., Demonterova E.I., Mikheeva E.A., Shergin D.L., Pellinen V.A., Teten’kin A.V., 2021. Comparative Analysis of X-Ray Fluorescence Methods for Elemental Composition Determination of the Archaeological Ceramics from Low Sample Quantity. Analytics and Control 25(1), 20-33. http://dx.doi.org/10.15826/analitika.2020.25.1.001.; Pashkova G.V., Revenko A.G., 2013a. Choice of Conditions for the Natural Water Analysis Using a Total Reflection X-Ray Fluorescence Spectrometer. Analytics and Control 17 (1), 10–20. http://dx.doi.org/10.15826/analitika.2013.17.1.002.; Pashkova G.V., Revenko A.G., 2013b. Determination of Elements in Water Using a Total Reflection X-Ray Fluorescence Spectrometer. Analytics and Control 17 (2), 122–140. http://dx.doi.org/10.15826/analitika.2013.17.2.001.; Pashkova G.V., Revenko A.G., 2015. A Review of Application of Total Reflection X-Ray Fluorescence Spectrometry to Water Analysis. Applied Spectroscopy Reviews 50 (6), 443–472. https://doi.org/10.1080/05704928.2015.1010205.; Pashkova G.V., Revenko A.G., Finkelshtein A.L., 2013. Study of Factors Affecting the Results of Natural Water Analyses by Total Reflection X‐Ray Fluorescence. X‐Ray Spectrometry 42 (6), 524–530. https://doi.org/10.1002/xrs.2513.; Pashkova G.V., Smagunova A.N., Finkelshtein A.L., 2018b. X-Ray Fluorescence Analysis of Milk and Dairy Products: A Review. TrAC Trends in Analytical Chemistry 106, 183–189. https://doi.org/10.1016/j.trac.2018.06.014.; Smagunova A.N., Pashkova G.V., 2013. Choice of Optimal Conditions for X‐Ray Fluorescence Analysis of Milk Products with Varying Fat Content. X‐Ray Spectrometry 42 (6), 546–551. https://doi.org/10.1002/xrs.2519.; Yoneda Y., Horiuchi T., 1971. Optical Flats for Use in X‐Ray Spectrochemical Microanalysis. Review of Scientific Instruments 42 (7), 1069–1070. https://doi.org/10.1063/1.1685282.; https://www.gt-crust.ru/jour/article/view/1437
DOI: 10.5800/GT-2022-13-2s-0601
الاتاحة: https://www.gt-crust.ru/jour/article/view/1437
https://doi.org/10.5800/GT-2022-13-2s-0601
Rights: Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
رقم الانضمام: edsbas.24251509
قاعدة البيانات: BASE
الوصف
DOI:10.5800/GT-2022-13-2s-0601