Academic Journal
Accelerator beam phase space tomography using machine learning to account for variations in beamline components
العنوان: | Accelerator beam phase space tomography using machine learning to account for variations in beamline components |
---|---|
المؤلفون: | Wolski, A., Botelho, D., Dunning, D., Pollard, A.E. |
المصدر: | Journal of Instrumentation ; volume 19, issue 07, page P07013 ; ISSN 1748-0221 |
بيانات النشر: | IOP Publishing |
سنة النشر: | 2024 |
الوصف: | We describe a technique for reconstruction of the four-dimensional transverse phase space of a beam in an accelerator beamline, taking into account the presence of unknown errors on the strengths of magnets used in the data collection. Use of machine learning allows rapid reconstruction of the phase-space distribution while at the same time providing estimates of the magnet errors. The technique is demonstrated using experimental data from CLARA, an accelerator test facility at Daresbury Laboratory. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | unknown |
DOI: | 10.1088/1748-0221/19/07/p07013 |
DOI: | 10.1088/1748-0221/19/07/P07013 |
DOI: | 10.1088/1748-0221/19/07/P07013/pdf |
الاتاحة: | http://dx.doi.org/10.1088/1748-0221/19/07/p07013 https://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07013 https://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07013/pdf |
Rights: | http://creativecommons.org/licenses/by/4.0/ ; https://iopscience.iop.org/info/page/text-and-data-mining |
رقم الانضمام: | edsbas.23E57104 |
قاعدة البيانات: | BASE |
DOI: | 10.1088/1748-0221/19/07/p07013 |
---|