Academic Journal

Accelerator beam phase space tomography using machine learning to account for variations in beamline components

التفاصيل البيبلوغرافية
العنوان: Accelerator beam phase space tomography using machine learning to account for variations in beamline components
المؤلفون: Wolski, A., Botelho, D., Dunning, D., Pollard, A.E.
المصدر: Journal of Instrumentation ; volume 19, issue 07, page P07013 ; ISSN 1748-0221
بيانات النشر: IOP Publishing
سنة النشر: 2024
الوصف: We describe a technique for reconstruction of the four-dimensional transverse phase space of a beam in an accelerator beamline, taking into account the presence of unknown errors on the strengths of magnets used in the data collection. Use of machine learning allows rapid reconstruction of the phase-space distribution while at the same time providing estimates of the magnet errors. The technique is demonstrated using experimental data from CLARA, an accelerator test facility at Daresbury Laboratory.
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
DOI: 10.1088/1748-0221/19/07/p07013
DOI: 10.1088/1748-0221/19/07/P07013
DOI: 10.1088/1748-0221/19/07/P07013/pdf
الاتاحة: http://dx.doi.org/10.1088/1748-0221/19/07/p07013
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07013
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07013/pdf
Rights: http://creativecommons.org/licenses/by/4.0/ ; https://iopscience.iop.org/info/page/text-and-data-mining
رقم الانضمام: edsbas.23E57104
قاعدة البيانات: BASE
الوصف
DOI:10.1088/1748-0221/19/07/p07013