Academic Journal

COMBINING YOLO V5 AND TRANSFER LEARNING FOR SMOKE-BASED WILDFIRE DETECTION IN BOREAL FORESTS

التفاصيل البيبلوغرافية
العنوان: COMBINING YOLO V5 AND TRANSFER LEARNING FOR SMOKE-BASED WILDFIRE DETECTION IN BOREAL FORESTS
المؤلفون: Raita-Hakola, A.-M., Rahkonen, S., Suomalainen, J., Markelin, L., Oliveira, R., Hakala, T., Koivumäki, N., Honkavaara, E., Pölönen, I.
بيانات النشر: Copernicus Publications
سنة النشر: 2023
المجموعة: Niedersächsisches Online-Archiv NOA (Gottfried Wilhelm Leibniz Bibliothek Hannover)
مصطلحات موضوعية: article, Verlagsveröffentlichung
الوصف: Wildfires present severe threats to various aspects of ecosystems, human settlements, and the environment. Early detection plays a critical role in minimizing the destructive consequences of wildfires. This study introduces an innovative approach for smoke-based wildfire detection in Boreal forests by combining the YOLO V5 algorithm and transfer learning. YOLO V5 is renowned for its real-time performance and accuracy in object detection. Given the scarcity of labelled smoke images specific to wildfire scenes, transfer learning techniques are employed to address this limitation. Initially, the generalisability of smoke as an object is examined by utilising wildfire data collected from diverse environments for fine-tuning and testing purposes in Boreal forest scenarios. Subsequently, Boreal forest fire data is employed for training and fine-tuning to achieve high detection accuracy and explore benchmarks for effective local training data. This approach minimises extensive manual labelling efforts while enhancing the accuracy of smoke-based wildfire detection in Boreal forest environments. Experimental results validate the efficacy of the proposed approach. The combined YOLO V5 and transfer learning framework demonstrates a high detection accuracy, making it a promising solution for automated wildfire detection systems. Implementing this methodology can potentially enhance early detection and response to wildfires in Boreal forest regions, thereby contributing to improved disaster management and mitigation strategies.
نوع الوثيقة: article in journal/newspaper
وصف الملف: electronic
اللغة: English
Relation: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences -- http://www.isprs.org/publications/archives.aspx -- 2194-9034; https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023; https://noa.gwlb.de/receive/cop_mods_00070485; https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068833/isprs-archives-XLVIII-1-W2-2023-1771-2023.pdf; https://isprs-archives.copernicus.org/articles/XLVIII-1-W2-2023/1771/2023/isprs-archives-XLVIII-1-W2-2023-1771-2023.pdf
DOI: 10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023
الاتاحة: https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023
https://noa.gwlb.de/receive/cop_mods_00070485
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068833/isprs-archives-XLVIII-1-W2-2023-1771-2023.pdf
https://isprs-archives.copernicus.org/articles/XLVIII-1-W2-2023/1771/2023/isprs-archives-XLVIII-1-W2-2023-1771-2023.pdf
Rights: https://creativecommons.org/licenses/by/4.0/ ; uneingeschränkt ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.220B32E2
قاعدة البيانات: BASE
الوصف
DOI:10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023