Academic Journal

A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO 2 hydrogenation to methanol

التفاصيل البيبلوغرافية
العنوان: A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO 2 hydrogenation to methanol
المؤلفون: Khatamirad, Mohammad, Fako, Edvin, Boscagli, Chiara, Müller, Matthias, Ebert, Fabian, Naumann d'Alnoncourt, Raoul, Schaefer, Ansgar, Schunk, Stephan Andreas, Jevtovikj, Ivana, Rosowski, Frank, De, Sandip
المساهمون: Deutsche Forschungsgemeinschaft
المصدر: Catalysis Science & Technology ; volume 13, issue 9, page 2656-2661 ; ISSN 2044-4753 2044-4761
بيانات النشر: Royal Society of Chemistry (RSC)
سنة النشر: 2023
الوصف: To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1039/d3cy00148b
الاتاحة: http://dx.doi.org/10.1039/d3cy00148b
http://pubs.rsc.org/en/content/articlepdf/2023/CY/D3CY00148B
Rights: http://creativecommons.org/licenses/by/3.0/
رقم الانضمام: edsbas.1FC1E084
قاعدة البيانات: BASE