Academic Journal
A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO 2 hydrogenation to methanol
العنوان: | A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO 2 hydrogenation to methanol |
---|---|
المؤلفون: | Khatamirad, Mohammad, Fako, Edvin, Boscagli, Chiara, Müller, Matthias, Ebert, Fabian, Naumann d'Alnoncourt, Raoul, Schaefer, Ansgar, Schunk, Stephan Andreas, Jevtovikj, Ivana, Rosowski, Frank, De, Sandip |
المساهمون: | Deutsche Forschungsgemeinschaft |
المصدر: | Catalysis Science & Technology ; volume 13, issue 9, page 2656-2661 ; ISSN 2044-4753 2044-4761 |
بيانات النشر: | Royal Society of Chemistry (RSC) |
سنة النشر: | 2023 |
الوصف: | To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
DOI: | 10.1039/d3cy00148b |
الاتاحة: | http://dx.doi.org/10.1039/d3cy00148b http://pubs.rsc.org/en/content/articlepdf/2023/CY/D3CY00148B |
Rights: | http://creativecommons.org/licenses/by/3.0/ |
رقم الانضمام: | edsbas.1FC1E084 |
قاعدة البيانات: | BASE |
DOI: | 10.1039/d3cy00148b |
---|