Death model covariate importance.

التفاصيل البيبلوغرافية
العنوان: Death model covariate importance.
المؤلفون: Gregory L. Watson (10492498), Di Xiong (7049522), Lu Zhang (50563), Joseph A. Zoller (10492501), John Shamshoian (10492504), Phillip Sundin (10492507), Teresa Bufford (10492510), Anne W. Rimoin (7252598), Marc A. Suchard (8032052), Christina M. Ramirez (10492513)
سنة النشر: 2021
المجموعة: Smithsonian Institution: Digital Repository
مصطلحات موضوعية: Biotechnology, Plant Biology, Environmental Sciences not elsewhere classified, Biological Sciences not elsewhere classified, Mathematical Sciences not elsewhere classified, Information Systems not elsewhere classified, Forecasting COVID -19, Bayesian time series compartmental ., 21- day forecasts, COVID -19 predictions, Bayesian time series model, pandemic, Bayesian case model, COVID -19 data, forest algorithm, compartmental model, COVID -19 case growth, U.S, COVID -19 model offer
الوصف: Covariate importance scores on the log scale for the random forest death model as the mean decrease in MSE associated with permutation of the variable’s values.
نوع الوثيقة: still image
اللغة: unknown
Relation: https://figshare.com/articles/figure/Death_model_covariate_importance_/14336272
DOI: 10.1371/journal.pcbi.1008837.g002
الاتاحة: https://doi.org/10.1371/journal.pcbi.1008837.g002
Rights: CC BY 4.0
رقم الانضمام: edsbas.1ECBD272
قاعدة البيانات: BASE
الوصف
DOI:10.1371/journal.pcbi.1008837.g002