التفاصيل البيبلوغرافية
العنوان: |
Death model covariate importance. |
المؤلفون: |
Gregory L. Watson (10492498), Di Xiong (7049522), Lu Zhang (50563), Joseph A. Zoller (10492501), John Shamshoian (10492504), Phillip Sundin (10492507), Teresa Bufford (10492510), Anne W. Rimoin (7252598), Marc A. Suchard (8032052), Christina M. Ramirez (10492513) |
سنة النشر: |
2021 |
المجموعة: |
Smithsonian Institution: Digital Repository |
مصطلحات موضوعية: |
Biotechnology, Plant Biology, Environmental Sciences not elsewhere classified, Biological Sciences not elsewhere classified, Mathematical Sciences not elsewhere classified, Information Systems not elsewhere classified, Forecasting COVID -19, Bayesian time series compartmental ., 21- day forecasts, COVID -19 predictions, Bayesian time series model, pandemic, Bayesian case model, COVID -19 data, forest algorithm, compartmental model, COVID -19 case growth, U.S, COVID -19 model offer |
الوصف: |
Covariate importance scores on the log scale for the random forest death model as the mean decrease in MSE associated with permutation of the variable’s values. |
نوع الوثيقة: |
still image |
اللغة: |
unknown |
Relation: |
https://figshare.com/articles/figure/Death_model_covariate_importance_/14336272 |
DOI: |
10.1371/journal.pcbi.1008837.g002 |
الاتاحة: |
https://doi.org/10.1371/journal.pcbi.1008837.g002 |
Rights: |
CC BY 4.0 |
رقم الانضمام: |
edsbas.1ECBD272 |
قاعدة البيانات: |
BASE |