Relation: |
mr:MR1904689; zbl:Zbl 1044.41008; reference:[1] Bjorck A.: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. MR 1386889; reference:[2] Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062; reference:[3] Gould I. M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming probem.Mathematical Programming 32 (1985) 90-99. MR 0787745; reference:[4] Kobza J.: Quartic interpolatory splines.Studia Univ. Babes-Bolyai, Math. (1996). MR 1644442; reference:[5] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. 63 (1995), 229-236. Zbl 0854.41011, MR 1447257; reference:[6] Kobza J.: Local representation of quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. MR 1620525; reference:[7] Kobza J.: Splajny.Vydavatelství UP, Olomouc, 1993 (textbook in Czech); reference:[8] Kobza J.: Computing solutions of linear difference equations.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.; reference:[9] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. Zbl 0958.41004, MR 1620529 |