Academic Journal

Relative error prediction: Strong uniform consistency for censoring time series model

التفاصيل البيبلوغرافية
العنوان: Relative error prediction: Strong uniform consistency for censoring time series model
المؤلفون: Bouhadjera, Feriel, Elias, Ould Saïd, Mohamed Riad, Remita
المساهمون: Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d'Opale (ULCO), Laboratoire de Probabilités et Statistique - LaPS (Annaba, Algérie), Université Badji Mokhtar - Annaba (ALGERIA)
المصدر: ISSN: 0361-0926.
بيانات النشر: HAL CCSD
Taylor & Francis
سنة النشر: 2022
مصطلحات موضوعية: Censored data, Kernel estimate, regression function, relative error, strong mixing, uniform almost sure consistency, Mathematics Subject Classification: 62G05, 62G08, 62G35, 62N02, [STAT]Statistics [stat], [MATH]Mathematics [math], stat
الوصف: International audience ; This article considers an adaptive method based on the relative error criteria to estimate the regression operator by a kernel smoothing. It is assumed that the variable of interest is subject to random right censoring and that the observations are from a stationary α-mixing process. The uniform almost sure consistency over a compact set with rate where we highlighted the covariance term is established. The simulation study indicates that the proposed approach has better performance in the presence of high level censoring and outliers in data to an existing classical method based on the least squares. An experiment prediction shows the quality of the relative error predictor
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: https://hal.archives-ouvertes.fr/hal-03771999
الاتاحة: https://hal.archives-ouvertes.fr/hal-03771999
Rights: undefined
رقم الانضمام: edsbas.1CD1D2F4
قاعدة البيانات: BASE