Academic Journal
Identification of system models from potential-stream equations on the basis of deep learning on experimental data ; Идентификация моделей систем из потенциально-потоковых уравнений на основе глубокого обучения по экспериментальным данным
العنوان: | Identification of system models from potential-stream equations on the basis of deep learning on experimental data ; Идентификация моделей систем из потенциально-потоковых уравнений на основе глубокого обучения по экспериментальным данным |
---|---|
المؤلفون: | I. Starostin E., S. Khalyutin P., И. Старостин Е., С. Халютин П. |
المصدر: | Civil Aviation High Technologies; Том 23, № 2 (2020); 47-58 ; Научный вестник МГТУ ГА; Том 23, № 2 (2020); 47-58 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2020-23-2 |
بيانات النشر: | Moscow State Technical University of Civil Aviation (MSTU CA) |
سنة النشر: | 2020 |
المجموعة: | Civil Aviation High TECHNOLOGIES (E-Journal) / Научный вестник МГТУ ГА |
مصطلحات موضوعية: | physical and chemical processes, mathematical modeling, potential-streaming method, deep learning, физико-химические процессы, математическое моделирование, потенциально-потоковый метод, глубокое обучение |
الوصف: | The functioning of various systems (in particular technical objects, living cells, the atmosphere and the ocean, etc.) is determined by the course of physical and physico-chemical processes in them. In order to model physicochemical processes in the general case, the authors previously developed a potential-flow method based on an experimental study (on the results of system tests) of the properties of substances and processes. In the general case, from these experimental data, many possible values of these properties are obtained. Knowing these properties of substances and processes, the initial state of the system, external influences on it (or the set of possible values of these quantities), we can analyze the dynamics of physicochemical processes in this system, and from it the dynamics of the characteristics of this system that have practical meaning. Thus, from the system of equations of this method, a relationship is obtained between the unobservable characteristics of these systems with the observed characteristics of the systems and laboratory systems under consideration (in which the properties of substances and processes in the system under study are experimentally studied). As the potential flow equations describing the physicochemical processes are generally quite complicated for analytical transformations, the aforementioned relationship must be obtained by numerical methods. The present work is devoted to the use of deep learning as a universal approximator for obtaining the described connection between the characteristics of arbitrary systems. These models are trained on the dynamics of the characteristics of the systems under consideration, obtained from potential-flow equations of physicochemical processes in them for different values of the parameters that determine the properties of substances and processes in these systems, their initial states, and external influences. ; Функционирование различных систем (в частности, технических объектов, живых клеток атмосферы и океана и т.д.) ... |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | https://avia.mstuca.ru/jour/article/view/1674/1200; Эткин В.А. Энергодинамика: синтез теорий переноса и преобразования энергии. СПб.: Наука, 2008. 409 с.; Jou D., Casas-Vazquez J., Lebon G. Extended irreversible thermodynamics. New York, USA: Springer, 2006. 528 p.; Старостин И.Е., Быков В.И. Кинетическая теорема современной неравновесной термодинамики. Raleigh, Noth Caroline, USA: Open Science Publishing, 2017. 229 с.; Старостин И.Е., Степанкин А.Г. Программная реализация методов современной неравновесной термодинамики. И система симуляции физико-химических процессов Simula-tionNonEqProcSS v.0.1.0. Lambert academic publishing RU, 2019. 132 с.; Starostin I.E., Khalyutin S.P. Obtaining robotic objects model from the equations of the potential-flow method // 20th international conference on micro/nanotechnologies and electron devices EDM, Novosibirsk, June 29 - July 3 2019. Pp. 678-684.; Старостин И.Е. Методика получения математической модели эксплуатируемого объекта из потенциально-потоковых уравнений физико-химических процессов // Научные горизонты. 2019. № 10 (26). С. 197-206.; Flach P. Machine learning. The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press, 2015. 400 p.; Shaikh F. Deep Learning vs. Machine Learning - the essential differences you need to know [Электронный ресурс]. Analytics Vidhya. URL: https://ru.esdifferent.com/differences-between-machine-learning-and-deep-learning (дата обращения 22.12.2019).; Eykhoff P. Systems identification: parametrs and state estimation. Eindhoven, Netherlands: University of technology, 1974. 555 p.; Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер, 2018. 480 с.; Haykin S. Neural Networks. A Comprehensive Foundation. Upper Saddle River, USA: Prentice hall, 2006. 1105 p.; Горева Т.И., Портнягин Н.Н., Пюкке Г.А. Нейросетевые модели диагностики технических систем // Вестник КРАУНЦ. Физ.-мат. науки. 2012. № 1 (4). C. 31-43.; Пюкке Г.А., Стрельников Д.С. Применение нейросетевого подхода при построении моделей анализа систем высокой размерности // Вестник Камчатского государственного технического университета. 2013. № 24. С. 21-28.; Козлова Л.Е. Разработка и исследование систем замкнутого асинхронного электропривода по схеме ТРН-АД с нейросетевым наблюдателем скорости // Современные проблемы науки и образования. 2013. № 5. С. 44.; Гализдра В.И., Бабаев Ш.Б. Нейронные сети и аппроксимация данных // Научные и образовательные проблемы гражданской защиты. 2011. № 3. С. 35-43.; Cybenko G.V. Approximation by superpositions of a sigmoidal function // Mathematics of Control Signals and Systems. 1989. Vol. 2, no. 4. Pp. 303-314. DOI:10.1007/BF02551274; Гридин В.Н., Солодовников В.И. Особенности внутреннего представления и визуализации извлекаемой из данных информации с использованием модульной нейронной сети BP-SOM // Новые информационные технологии в автоматизированных системах. 2017. № 20. С.170-175.; Горбань А.Н. Обобщенная аппроксимационная теорема и вычислительные возможности нейронных сетей // Сибирский журнал вычислительной математики. 1998. Т. 1, № 1. С. 11-24.; Евдокимов И.А., Солодовников В.И. Автоматизация построения нейронной сети в рамках объектно-ориентированного подхода // Новые информационные технологии в автоматизированных системах. 2015. № 18. С. 89-97.; Калистратов Т.А. Методы и алгоритмы создания структуры нейронной сети в контексте универсальной аппроксимации функций // Вестник Тамбовского университета. Серия Естественные и технические науки. 2014. Т. 19, № 6. С. 1845-1848.; Бондаренко И.Б., Гатчин Ю.А., Гераничев В.Н. Синтез оптимальных искусственных нейронных сетей с помощью модифицированного генетического алгоритма // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 2 (78). С. 51-55.; Шумков Е.А., Чистик И.К. Использование генетических алгоритмов для обучения нейронных сетей // Политематический Сетевой Электронный Научный журнал Кубанского государственного аграрного университета. 2013. № 91. С. 455-464.; Дивеев А.И. Вариационные методы символьной регрессии для задач управления и идентификации // Идентификация систем и задачи управления: труды X международной конференции, Москва, 26-29 января 2015 г. Институт проблем управления им. В.А. Трапезникова РАН, 2015. С. 141-148.; Дивеев А.И. Свойства суперпозиции функций для численных методов символьной регрессии // Cloud of Science. 2016. Т. 3, № 2. С. 290-301.; Данг Т.Ф., Дивеев А.И., Софронова Е.А. Решение задач идентификации математических моделей объектов и процессов методом символьной регрессии // Cloud of Science. 2018. Т. 5, № 1. С. 147-162.; Дивеев А.И., Ломакова Е.М. Метод бинарного генетического программирования для поиска математического выражения // Вестник Российского университета дружбы народов: серия: инженерные исследования. 2017. Т. 18, № 1. С. 125-134. DOI:10.22363/2312-8143-2017-18-1-125-134; Ильин И.В. Алгоритмы извлечения правил искусственных нейронных сетей // Вестник современных исследований. 2018. № 9.1 (24). С. 149-152.; https://avia.mstuca.ru/jour/article/view/1674 |
DOI: | 10.26467/2079-0619-2020-23-2-47-58 |
الاتاحة: | https://avia.mstuca.ru/jour/article/view/1674 https://doi.org/10.26467/2079-0619-2020-23-2-47-58 |
Rights: | Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
رقم الانضمام: | edsbas.1B8E2AD0 |
قاعدة البيانات: | BASE |
DOI: | 10.26467/2079-0619-2020-23-2-47-58 |
---|