Report
The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions without complementing conditions
العنوان: | The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions without complementing conditions |
---|---|
المؤلفون: | Fornerod, Jean, Nguyen, Hoai-Minh |
المساهمون: | Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
المصدر: | https://hal.science/hal-03938932 ; 2023. |
بيانات النشر: | HAL CCSD |
سنة النشر: | 2023 |
مصطلحات موضوعية: | MSC: 47A10 47A40 35A01 35A15 78A25 transmission eigenvalue problem inverse scattering Weyl law counting function generalized eigenfunctions completeness Cauchy's problems regularity theory Hilbert-Schmidt operators. Contents, MSC: 47A10, 47A40, 35A01, 35A15, 78A25 transmission eigenvalue problem, inverse scattering, Weyl law, counting function, generalized eigenfunctions, completeness, Cauchy's problems, regularity theory, Hilbert-Schmidt operators. Contents, [MATH]Mathematics [math], [SPI]Engineering Sciences [physics] |
الوصف: | The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenfunctions for a system without complementing conditions, i.e., the two equations of the system have the same coefficients for the second order terms, and thus being degenerate. These coefficients are allowed to be anisotropic and are assumed to be of class $C^2$. One of the keys of the analysis is to establish the well-posedness and the regularity in $L^p$-scale for such a system. As a result, we largely extend and rediscover known results for which the coefficients for the second order terms are required to be isotropic and of class $C^\infty$ using a new approach. |
نوع الوثيقة: | report |
اللغة: | English |
Relation: | hal-03938932; https://hal.science/hal-03938932; https://hal.science/hal-03938932/document; https://hal.science/hal-03938932/file/WeylLaws-Fornerod-Nguyen.pdf |
الاتاحة: | https://hal.science/hal-03938932 https://hal.science/hal-03938932/document https://hal.science/hal-03938932/file/WeylLaws-Fornerod-Nguyen.pdf |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.1B06027C |
قاعدة البيانات: | BASE |
الوصف غير متاح. |