Academic Journal

Inner products involving differences: The Meixner-Sobolev polynomials

التفاصيل البيبلوغرافية
العنوان: Inner products involving differences: The Meixner-Sobolev polynomials
المؤلفون: Area, Iván, Godoy, Eduardo, Marcellán Español, Francisco José
بيانات النشر: Taylor & Francis
سنة النشر: 2000
المجموعة: Universidad Carlos III de Madrid: e-Archivo
مصطلحات موضوعية: Meixner polynomials, Sobolev orthogonal polynomials, Difference operators, Pollaczek polynomials, Zeros of orthogonal polynomials, Polynomial approximation, Matemáticas
الوصف: 31 pages, no figures.-- MSC2000 codes: 33C45, 33D45, 39A10, 39A70, 42C05. ; MR#: MR1752153 (2000m:33006) ; Zbl#: Zbl 0948.33004 ; In this paper, polynomials which are orthogonal with respect to the inner product $$\langle p,q\rangle_S= \sum infty_{s=0} p(s)q(s) {\mu \Gamma (\gamma+s) \over\Gamma(s+1) \Gamma (\gamma)}+ \lambda \sum infty_{s=0} \Delta p(s)\Delta q(s){\mu \Gamma(\gamma+s) \over\Gamma (s+1)\Gamma (\gamma)},$$ where $0<\mu<1$, $\gamma>0$, $\lambda\ge 0$ are studied. For these polynomials, algebraic properties and difference equations are obtained as well as their relation with the Meixner polynomials. Moreover, some properties about the zeros of these polynomials are deduced. ; The work of I.A. and E.G. has been partially supported by Xunta de Galicia-Universidade de Vigo under grant 64502I703. E.G. also wishes to acknowledge partial support by Dirección General de Enseñanza Superior (DGES) of Spain under grant PB-95-0828. The research of F.M. was partially supported by DGES of Spain under Grant PB96-1020-C03-01 and INTAS Project 93-0219 Ext. ; Publicado
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
تدمد: 1023-6198
Relation: http://dx.doi.org/10.1080/10236190008808211; Journal of Difference Equations and Applications, 2000, vol. 6, n. 1, p. 1-31; http://hdl.handle.net/10016/6156
DOI: 10.1080/10236190008808211
الاتاحة: http://hdl.handle.net/10016/6156
https://doi.org/10.1080/10236190008808211
Rights: © Taylor & Francis ; open access
رقم الانضمام: edsbas.1B0147F1
قاعدة البيانات: BASE
الوصف
تدمد:10236198
DOI:10.1080/10236190008808211