Academic Journal

The $\sigma$-property in $C(X)$

التفاصيل البيبلوغرافية
العنوان: The $\sigma$-property in $C(X)$
المؤلفون: Hager, Anthony W.
بيانات النشر: Charles University in Prague, Faculty of Mathematics and Physics
سنة النشر: 2016
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:Riesz space, keyword:$\sigma$-property, keyword:bounding number, keyword:$P$-space, keyword:paracompact, keyword:locally compact, msc:03E17, msc:06F20, msc:46A40, msc:54A25, msc:54C30, msc:54D20, msc:54D45, msc:54G10
الوصف: summary:The $\sigma$-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\{b_{n}\}$ of positive elements of $B$, there is a sequence $\{\lambda_{n}\}$ of positive reals, and $b\in B$, with $\lambda_{n}b_{n}\leq b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when ``$\sigma$'' obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma$ iff the cardinal $|X|< \mathfrak{b}$, Rothberger's bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\leq \mathfrak{b}$, then $C(X)$ has $\sigma$. For paracompact $X$, if $C(X)$ has $\sigma$, then $L(X)\leq \mathfrak{b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma$, then $X$ \textit{is} locally compact.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0010-2628
1213-7243
Relation: mr:MR3513446; zbl:Zbl 06604503; reference:[BGHTZ09] Ball R., Gochev V., Hager A., Todorčević S., Zoble S.: Topological group criterion for $C(X)$ in compact-open-like topologies I.Topology Appl. 156 (2009), 710–720. Zbl 1166.54007, MR 2492956; reference:[BJ86] Blass A., Jech T.: On the Egoroff property of pointwise convergent sequences of functions.Proc. Amer. Math. Society 90 (1986), 524–526. Zbl 0601.54004, MR 0857955, 10.1090/S0002-9939-1986-0857955-3; reference:[D74] Dodds, Theresa K.Y. Chow: Egoroff properties and the order topology in Riesz spaces.Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 0336282, 10.1090/S0002-9947-1974-0336282-3; reference:[D84] van Douwen E.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl 0561.54004, MR 0776622; reference:[E89] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[GJ60] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199; reference:[HM15] Hager A., van Mill J.: Egoroff, $\sigma$, and convergence properties in some archimedean vector lattices.Studia Math. 231 (2015), 269–285. MR 3471054; reference:[HR16] Hager A., Raphael R.: The countable lifting property for Riesz space surjections.Indag. Math., 27 (2016), 75–84. MR 3437737, 10.1016/j.indag.2015.07.005; reference:[H68] Holbrook J.: Seminorms and the Egoroff property in Riesz spaces.Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl 0169.14802, MR 0228979, 10.1090/S0002-9947-1968-0228979-8; reference:[J80] Jech T.: On a problem of L. Nachbin.Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl 0441.04002, MR 0565368, 10.1090/S0002-9939-1980-0565368-1; reference:[J02] Jech T.: Set Theory.third millennium edition, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[LZ71] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces.Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl 0231.46014, MR 0511676
الاتاحة: http://hdl.handle.net/10338.dmlcz/145753
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.17CA998
قاعدة البيانات: BASE