Self-looped configurations of a trained ELM to forecast discrete-time dynamical systems.

التفاصيل البيبلوغرافية
العنوان: Self-looped configurations of a trained ELM to forecast discrete-time dynamical systems.
المؤلفون: Sri Harsha Turlapati, Lyudmila Grigoryeva, Juan-Pablo Ortega, Domenico Campolo
سنة النشر: 2024
مصطلحات موضوعية: Medicine, Neuroscience, Physiology, Sociology, Infectious Diseases, including minimum jerk, piecewise power law, 3 power law, artificially produced movements, power law, like movements, human movements, curvilinear movements, %22">xlink ">, trained reservoir, reservoir system, reservoir computing, reproduce human, moving frame, laws quantify, invariant learning, instantaneous velocity, human counterparts, generalisation capabilities, evaluated using, closest point, based framework, assess whether
الوصف: Note that Δ t in a discrete-time experiment corresponds to the sampling rate.
نوع الوثيقة: still image
اللغة: unknown
Relation: https://figshare.com/articles/figure/Self-looped_configurations_of_a_trained_ELM_to_forecast_discrete-time_dynamical_systems_/25306944
DOI: 10.1371/journal.pone.0294046.g002
الاتاحة: https://doi.org/10.1371/journal.pone.0294046.g002
https://figshare.com/articles/figure/Self-looped_configurations_of_a_trained_ELM_to_forecast_discrete-time_dynamical_systems_/25306944
Rights: CC BY 4.0
رقم الانضمام: edsbas.15D299A0
قاعدة البيانات: BASE
الوصف
DOI:10.1371/journal.pone.0294046.g002