التفاصيل البيبلوغرافية
العنوان: |
Self-looped configurations of a trained ELM to forecast discrete-time dynamical systems. |
المؤلفون: |
Sri Harsha Turlapati, Lyudmila Grigoryeva, Juan-Pablo Ortega, Domenico Campolo |
سنة النشر: |
2024 |
مصطلحات موضوعية: |
Medicine, Neuroscience, Physiology, Sociology, Infectious Diseases, including minimum jerk, piecewise power law, 3 power law, artificially produced movements, power law, like movements, human movements, curvilinear movements, %22">xlink ">, trained reservoir, reservoir system, reservoir computing, reproduce human, moving frame, laws quantify, invariant learning, instantaneous velocity, human counterparts, generalisation capabilities, evaluated using, closest point, based framework, assess whether |
الوصف: |
Note that Δ t in a discrete-time experiment corresponds to the sampling rate. |
نوع الوثيقة: |
still image |
اللغة: |
unknown |
Relation: |
https://figshare.com/articles/figure/Self-looped_configurations_of_a_trained_ELM_to_forecast_discrete-time_dynamical_systems_/25306944 |
DOI: |
10.1371/journal.pone.0294046.g002 |
الاتاحة: |
https://doi.org/10.1371/journal.pone.0294046.g002 https://figshare.com/articles/figure/Self-looped_configurations_of_a_trained_ELM_to_forecast_discrete-time_dynamical_systems_/25306944 |
Rights: |
CC BY 4.0 |
رقم الانضمام: |
edsbas.15D299A0 |
قاعدة البيانات: |
BASE |