Academic Journal

Multilayer feed-forward artificial neural networks for class-modeling

التفاصيل البيبلوغرافية
العنوان: Multilayer feed-forward artificial neural networks for class-modeling
المؤلفون: MARINI, Federico, MAGRI', Antonio, BUCCI, Remo
المساهمون: Marini, Federico, Magri', Antonio, Bucci, Remo
بيانات النشر: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
سنة النشر: 2007
المجموعة: Sapienza Università di Roma: CINECA IRIS
مصطلحات موضوعية: pattern recognition, class-modeling, multilayer feed-forward artificial neural networks
الوصف: A class-modeling algorithm based on multilayer feed-forward artificial neural networks is proposed. According to this method, each category model is described by an auto-associator network, so the class space is defined on the basis of a distance to the model criterion which takes into account the residual standard deviation of the reconstructed input vectors. The details of the method are discussed and examples of its application to a simulated ("exclusive-OR") and a real-world (classification of wines) problem are presented. As far as the simulated highly non-linear example is concerned, NN-based class modeling outperforms SIMCA and UNEQ both in terms of classification rate and specificity. On the other hand, when dealing with the wine data set, which has a less non-linear structure, our proposed method still provides comparable and, in some cases, better results than the other two techniques.
نوع الوثيقة: article in journal/newspaper
وصف الملف: STAMPA
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000248247800013; volume:88; issue:1; firstpage:118; lastpage:124; numberofpages:7; journal:CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS; http://hdl.handle.net/11573/232838; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-34250619150; http://www.sciencedirect.com/science/article/pii/S0169743906001560
DOI: 10.1016/j.chemolab.2006.07.004
الاتاحة: http://hdl.handle.net/11573/232838
https://doi.org/10.1016/j.chemolab.2006.07.004
http://www.sciencedirect.com/science/article/pii/S0169743906001560
رقم الانضمام: edsbas.148EBD16
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.chemolab.2006.07.004