Academic Journal
Temperature‐sensitive biochemical $^{18}$O‐fractionation and humidity‐dependent attenuation factor are needed to predict δ $^{18}$O of cellulose from leaf water in a grassland ecosystem
العنوان: | Temperature‐sensitive biochemical $^{18}$O‐fractionation and humidity‐dependent attenuation factor are needed to predict δ $^{18}$O of cellulose from leaf water in a grassland ecosystem |
---|---|
المؤلفون: | Hirl, Regina T., Ogée, Jérôme, Ostler, Ulrike, Schäufele, Rudi, Baca Cabrera, Juan C., Zhu, Jianjun, Schleip, Inga, Wingate, Lisa, Schnyder, Hans |
المصدر: | The new phytologist, 229 (6), 3156-3171 ; ISSN: 0028-646X, 1469-8137 |
بيانات النشر: | John Wiley and Sons |
سنة النشر: | 2021 |
المجموعة: | KITopen (Karlsruhe Institute of Technologie) |
مصطلحات موضوعية: | canopy conductance, grassland, isotope‐enabled soil–vegetation–atmosphere transfer model (MuSICA), 18O‐enrichment of cellulose oxygen isotope composition of cellulose, perennial ryegrass (Lolium perenne), relative humidity temperature, ddc:550, Earth sciences, info:eu-repo/classification/ddc/550 |
الوصف: | We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of leaf cellulose (δ$^{18}$O$_{cellulose}$) in a drought‐prone, temperate grassland ecosystem. A new allocation‐and‐growth model was designed and added to an $^{18}$O‐enabled soil–vegetation–atmosphere transfer model (MuSICA) to predict seasonal (April–October) and multi‐annual (2007–2012) variation of δ$^{18}$O$_{cellulose}$ and $^{18}$O‐enrichment of leaf cellulose (Δ$^{18}$O$_{cellulose}$) based on the Barbour–Farquhar model. Modelled δ$^{18}$O$_{cellulose}$ agreed best with observations when integrated over c. 400 growing‐degree‐days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.57) and Δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.74), and their negative relationship with canopy conductance, was improved significantly when both the biochemical $^{18}$O‐fractionation between water and substrate for cellulose synthesis (ε$_{bio}$, range 26–30‰) was temperature‐sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water $^{18}$O‐enrichment (1 – p$_{ex}$p$_{x}$, range 0.23–0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. Understanding physiological information in δ$^{18}$O$_{cellulose}$ requires quantitative knowledge of climatic effects on p$_{ex}$p$_{x}$ and ε$_{bio}$. |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/wos/000603489600001; info:eu-repo/semantics/altIdentifier/issn/0028-646X; info:eu-repo/semantics/altIdentifier/issn/1469-8137; https://publikationen.bibliothek.kit.edu/1000129335; https://publikationen.bibliothek.kit.edu/1000129335/101641618; https://doi.org/10.5445/IR/1000129335 |
DOI: | 10.5445/IR/1000129335 |
الاتاحة: | https://publikationen.bibliothek.kit.edu/1000129335 https://publikationen.bibliothek.kit.edu/1000129335/101641618 https://doi.org/10.5445/IR/1000129335 |
Rights: | https://creativecommons.org/licenses/by/4.0/deed.de ; info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.13E4AE7B |
قاعدة البيانات: | BASE |
DOI: | 10.5445/IR/1000129335 |
---|