Are Transformers More Robust? Towards Exact Robustness Verification for Transformers

التفاصيل البيبلوغرافية
العنوان: Are Transformers More Robust? Towards Exact Robustness Verification for Transformers
المؤلفون: Liao, Brian Hsuan-Cheng, Cheng, Chih-Hong, Esen, Hasan, Knoll, Alois
سنة النشر: 2023
المجموعة: Publikationsdatenbank der Fraunhofer-Gesellschaft
مصطلحات موضوعية: neural networks, NN, transformer, robustness, safety, Mixed Integer Quadratically Constrained Programming, MIQCP, Multi-Layer-Perceptron, MLP, safety-critical, neural networks verification, lane departure warning, autonomous driving
الوصف: 89 ; 103 ; As an emerging type of Neural Networks (NNs), Transformers are used in many domains ranging from Natural Language Processing to Autonomous Driving. In this paper, we study the robustness problem of Transformers, a key characteristic as low robustness may cause safety concerns. Specifically, we focus on Sparsemax-based Transformers and reduce the finding of their maximum robustness to a Mixed Integer Quadratically Constrained Programming (MIQCP) problem. We also design two pre-processing heuristics that can be embedded in the MIQCP encoding and substantially accelerate its solving. We then conduct experiments using the application of Land Departure Warning to compare the robustness of Sparsemax-based Transformers against that of the more conventional Multi-Layer-Perceptron (MLP) NNs. To our surprise, Transformers are not necessarily more robust, leading to profound considerations in selecting appropriate NN architectures for safety-critical domain applications.
نوع الوثيقة: conference object
اللغة: English
ردمك: 978-3-031-40923-3
3-031-40923-X
Relation: International Conference on Computer Safety, Reliability and Security 2023; Computer Safety, Reliability, and Security. 42nd International Conference, SAFECOMP 2023. Proceedings; FOUNDATIONS FOR CONTINUOUS ENGINEERING OF TRUSTWORTHY AUTONOMY; 956123; https://publica.fraunhofer.de/handle/publica/451207
DOI: 10.1007/978-3-031-40923-3_8
الاتاحة: https://publica.fraunhofer.de/handle/publica/451207
https://doi.org/10.1007/978-3-031-40923-3_8
رقم الانضمام: edsbas.1091BBBA
قاعدة البيانات: BASE
الوصف
ردمك:9783031409233
303140923X
DOI:10.1007/978-3-031-40923-3_8