التفاصيل البيبلوغرافية
العنوان: |
Spanning k-Ended Tree in 2-Connected Graph |
المؤلفون: |
Wanpeng Lei, Jun Yin |
المصدر: |
Axioms; Volume 12; Issue 5; Pages: 411 |
بيانات النشر: |
Multidisciplinary Digital Publishing Institute |
سنة النشر: |
2023 |
المجموعة: |
MDPI Open Access Publishing |
مصطلحات موضوعية: |
connectivity, independence number, k-ended tree, maximum independent set |
الوصف: |
Win proved a very famous conclusion that states the graph G with connectivity κ(G), independence number α(G) and α(G)≤κ(G)+k−1(k≥2) contains a spanning k-ended tree. This means that there exists a spanning tree with at most k leaves. In this paper, we strengthen the Win theorem to the following: Let G be a simple 2-connected graph such that |V(G)|≥2κ(G)+k, α(G)≤κ(G)+k(k≥2) and the number of maximum independent sets of cardinality κ+k is at most n−2κ−k+1. Then, either G contains a spanning k-ended tree or a subgraph of Kκ∨((k+κ−1)K1∪Kn−2κ−k+1). |
نوع الوثيقة: |
text |
وصف الملف: |
application/pdf |
اللغة: |
English |
Relation: |
Mathematical Analysis; https://dx.doi.org/10.3390/axioms12050411 |
DOI: |
10.3390/axioms12050411 |
الاتاحة: |
https://doi.org/10.3390/axioms12050411 |
Rights: |
https://creativecommons.org/licenses/by/4.0/ |
رقم الانضمام: |
edsbas.105FCDA0 |
قاعدة البيانات: |
BASE |