Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt Generation for Enhanced LLM Content Moderation

التفاصيل البيبلوغرافية
العنوان: Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt Generation for Enhanced LLM Content Moderation
المؤلفون: Schwartz, Daniel, Bespalov, Dmitriy, Wang, Zhe, Kulkarni, Ninad, Qi, Yanjun
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Cryptography and Security, Computer Science - Artificial Intelligence, Computer Science - Computation and Language
الوصف: We present a modular pipeline that automates the generation of stealthy jailbreak prompts derived from high-level content policies, enhancing LLM content moderation. First, we address query inefficiency and jailbreak strength by developing Graph of Attacks with Pruning (GAP), a method that utilizes strategies from prior jailbreaks, resulting in 92% attack success rate on GPT-3.5 using only 54% of the queries of the prior algorithm. Second, we address the cold-start issue by automatically generating seed prompts from the high-level policy using LLMs. Finally, we demonstrate the utility of these generated jailbreak prompts of improving content moderation by fine-tuning PromptGuard, a model trained to detect jailbreaks, increasing its accuracy on the Toxic-Chat dataset from 5.1% to 93.89%.
Comment: 15 pages, 7 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2501.18638
رقم الانضمام: edsarx.2501.18638
قاعدة البيانات: arXiv