AdditiveLLM: Large Language Models Predict Defects in Additive Manufacturing

التفاصيل البيبلوغرافية
العنوان: AdditiveLLM: Large Language Models Predict Defects in Additive Manufacturing
المؤلفون: Pak, Peter, Farimani, Amir Barati
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Machine Learning
الوصف: In this work we investigate the ability of large language models to predict additive manufacturing defect regimes given a set of process parameter inputs. For this task we utilize a process parameter defect dataset to fine-tune a collection of models, titled AdditiveLLM, for the purpose of predicting potential defect regimes including Keyholing, Lack of Fusion, and Balling. We compare different methods of input formatting in order to gauge the model's performance to correctly predict defect regimes on our sparse Baseline dataset and our natural language Prompt dataset. The model displays robust predictive capability, achieving an accuracy of 93\% when asked to provide the defect regimes associated with a set of process parameters. The incorporation of natural language input further simplifies the task of process parameters selection, enabling users to identify optimal settings specific to their build.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2501.17784
رقم الانضمام: edsarx.2501.17784
قاعدة البيانات: arXiv