MACI: Multi-Agent Collaborative Intelligence for Adaptive Reasoning and Temporal Planning

التفاصيل البيبلوغرافية
العنوان: MACI: Multi-Agent Collaborative Intelligence for Adaptive Reasoning and Temporal Planning
المؤلفون: Chang, Edward Y.
المصدر: Stanford University InfoLab Technical Report, 2025
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Artificial Intelligence, F.2.2
الوصف: Artificial intelligence requires deliberate reasoning, temporal awareness, and effective constraint management, capabilities traditional LLMs often lack due to their reliance on pattern matching, limited self-verification, and inconsistent constraint handling. We introduce Multi-Agent Collaborative Intelligence (MACI), a framework comprising three key components: 1) a meta-planner (MP) that identifies, formulates, and refines all roles and constraints of a task (e.g., wedding planning) while generating a dependency graph, with common-sense augmentation to ensure realistic and practical constraints; 2) a collection of agents to facilitate planning and address task-specific requirements; and 3) a run-time monitor that manages plan adjustments as needed. By decoupling planning from validation, maintaining minimal agent context, and integrating common-sense reasoning, MACI overcomes the aforementioned limitations and demonstrates robust performance in two scheduling problems.
Comment: 21 pages, 19 tables
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2501.16689
رقم الانضمام: edsarx.2501.16689
قاعدة البيانات: arXiv