التفاصيل البيبلوغرافية
العنوان: |
Extremal distance spectra of graphs and essential connectivity |
المؤلفون: |
Zhang, Daoxia, Li, Dan, Ding, Wenxiu |
سنة النشر: |
2025 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Combinatorics |
الوصف: |
A graph is non-trivial if it contains at least one nonloop edge. The essential connectivity of $G$, denoted by $\kappa'(G)$, is the minimum number of vertices of $G$ whose removal produces a disconnected graph with at least two components are non-trivial. In this paper, we determine the $n$-vertex graph of given essential connectivity with minimum distance spectral radius. We also characterize the extremal graphs attaining the minimum distance spectral radius among all connected graphs with fixed essential connectivity and minimum degree. Furthermore, we characterize the extremal digraphs with minimum distance spectral radius among the strongly connected digraphs with given essential connectivity. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2501.11500 |
رقم الانضمام: |
edsarx.2501.11500 |
قاعدة البيانات: |
arXiv |