Detecting Contextual Anomalies by Discovering Consistent Spatial Regions

التفاصيل البيبلوغرافية
العنوان: Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
المؤلفون: Yang, Zhengye, Radke, Richard J.
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence
الوصف: We describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2501.08470
رقم الانضمام: edsarx.2501.08470
قاعدة البيانات: arXiv