Histogram-Equalized Quantization for logic-gated Residual Neural Networks

التفاصيل البيبلوغرافية
العنوان: Histogram-Equalized Quantization for logic-gated Residual Neural Networks
المؤلفون: Nguyen, Van Thien, Guicquero, William, Sicard, Gilles
المصدر: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 1289-1293
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Machine Learning, Computer Science - Hardware Architecture
الوصف: Adjusting the quantization according to the data or to the model loss seems mandatory to enable a high accuracy in the context of quantized neural networks. This work presents Histogram-Equalized Quantization (HEQ), an adaptive framework for linear symmetric quantization. HEQ automatically adapts the quantization thresholds using a unique step size optimization. We empirically show that HEQ achieves state-of-the-art performances on CIFAR-10. Experiments on the STL-10 dataset even show that HEQ enables a proper training of our proposed logic-gated (OR, MUX) residual networks with a higher accuracy at a lower hardware complexity than previous work.
Comment: Published at IEEE ISCAS 2022
نوع الوثيقة: Working Paper
DOI: 10.1109/ISCAS48785.2022.9937290
URL الوصول: http://arxiv.org/abs/2501.04517
رقم الانضمام: edsarx.2501.04517
قاعدة البيانات: arXiv
الوصف
DOI:10.1109/ISCAS48785.2022.9937290