Target Tracking Using the Invariant Extended Kalman Filter with Numerical Differentiation for Estimating Curvature and Torsion

التفاصيل البيبلوغرافية
العنوان: Target Tracking Using the Invariant Extended Kalman Filter with Numerical Differentiation for Estimating Curvature and Torsion
المؤلفون: Verma, Shashank, Bernstein, Dennis S.
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Electrical Engineering and Systems Science - Systems and Control, Electrical Engineering and Systems Science - Signal Processing
الوصف: The goal of target tracking is to estimate target position, velocity, and acceleration in real time using position data. This paper introduces a novel target-tracking technique that uses adaptive input and state estimation (AISE) for real-time numerical differentiation to estimate velocity, acceleration, and jerk from position data. These estimates are used to model the target motion within the Frenet-Serret (FS) frame. By representing the model in SE(3), the position and velocity are estimated using the invariant extended Kalman filter (IEKF). The proposed method, called FS-IEKF-AISE, is illustrated by numerical examples and compared to prior techniques.
Comment: 7 pages, 8 figures, submitted to ACC 2025
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2501.04262
رقم الانضمام: edsarx.2501.04262
قاعدة البيانات: arXiv