Report
Target Tracking Using the Invariant Extended Kalman Filter with Numerical Differentiation for Estimating Curvature and Torsion
العنوان: | Target Tracking Using the Invariant Extended Kalman Filter with Numerical Differentiation for Estimating Curvature and Torsion |
---|---|
المؤلفون: | Verma, Shashank, Bernstein, Dennis S. |
سنة النشر: | 2025 |
المجموعة: | Computer Science |
مصطلحات موضوعية: | Electrical Engineering and Systems Science - Systems and Control, Electrical Engineering and Systems Science - Signal Processing |
الوصف: | The goal of target tracking is to estimate target position, velocity, and acceleration in real time using position data. This paper introduces a novel target-tracking technique that uses adaptive input and state estimation (AISE) for real-time numerical differentiation to estimate velocity, acceleration, and jerk from position data. These estimates are used to model the target motion within the Frenet-Serret (FS) frame. By representing the model in SE(3), the position and velocity are estimated using the invariant extended Kalman filter (IEKF). The proposed method, called FS-IEKF-AISE, is illustrated by numerical examples and compared to prior techniques. Comment: 7 pages, 8 figures, submitted to ACC 2025 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2501.04262 |
رقم الانضمام: | edsarx.2501.04262 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |