Report
Fixed point theorems for weak, partial, Bianchini and Chatterjea-Bianchini contractions in semimetric spaces with triangle functions
العنوان: | Fixed point theorems for weak, partial, Bianchini and Chatterjea-Bianchini contractions in semimetric spaces with triangle functions |
---|---|
المؤلفون: | Bisht, Ravindra K., Petrov, Evgen O. |
المصدر: | J. Math. Sci. 285, 652--665 (2024) |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - General Topology, Primary 47H10, Secondary 47H09 |
الوصف: | This paper advances a line of research in fixed point theory initiated by M. Bessenyei and Z. P\'ales, building on their introduction of the triangle function concept in [J. Nonlinear Convex Anal, Vol 18 (3), 515-524 (2017)]. By applying this concept, the study revises several well-known fixed point theorems in metric spaces, extending their applicability to semimetric spaces with triangle functions. The paper focuses on general theorems involving weak, partial, Bianchini and Chatterjea-Bianchini contractions, deriving corollaries relevant to metric spaces, $b$-metric spaces, ultrametric spaces, and distance spaces with power triangle functions. Notably, several new and interesting findings emerge in the context of weak and partial contractions. Comment: 19 pages |
نوع الوثيقة: | Working Paper |
DOI: | 10.1007/s10958-024-07463-9 |
URL الوصول: | http://arxiv.org/abs/2501.00392 |
رقم الانضمام: | edsarx.2501.00392 |
قاعدة البيانات: | arXiv |
DOI: | 10.1007/s10958-024-07463-9 |
---|