OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System

التفاصيل البيبلوغرافية
العنوان: OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
المؤلفون: Luo, Yujie, Ru, Xiangyuan, Liu, Kangwei, Yuan, Lin, Sun, Mengshu, Zhang, Ningyu, Liang, Lei, Zhang, Zhiqiang, Zhou, Jun, Wei, Lanning, Zheng, Da, Wang, Haofen, Chen, Huajun
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computation and Language, Computer Science - Artificial Intelligence, Computer Science - Databases, Computer Science - Information Retrieval, Computer Science - Machine Learning
الوصف: We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
Comment: Work in progress
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2412.20005
رقم الانضمام: edsarx.2412.20005
قاعدة البيانات: arXiv