On the total surface area of potato packings

التفاصيل البيبلوغرافية
العنوان: On the total surface area of potato packings
المؤلفون: Novaga, Matteo, Paolini, Emanuele, Stepanov, Eugene
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Metric Geometry, Mathematics - Analysis of PDEs
الوصف: We prove that if we fill without gaps a bag with infinitely many potatoes, in such a way that they touch each other in few points, then the total surface area of the potatoes must be infinite. In this context potatoes are measurable subsets of the Euclidean space, the bag is any open set of the same space. As we show, this result also holds in the general context of doubling (even locally) metric measure spaces satisfying Poincar\'e inequality, in particular in smooth Riemannian manifolds and even in some sub-Riemannian spaces.
Comment: 9 pages, 2 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2412.10905
رقم الانضمام: edsarx.2412.10905
قاعدة البيانات: arXiv