On best approximation by multivariate ridge functions with applications to generalized translation networks

التفاصيل البيبلوغرافية
العنوان: On best approximation by multivariate ridge functions with applications to generalized translation networks
المؤلفون: Geuchen, Paul, Salanevich, Palina, Schavemaker, Olov, Voigtlaender, Felix
سنة النشر: 2024
المجموعة: Computer Science
Mathematics
Statistics
مصطلحات موضوعية: Mathematics - Functional Analysis, Computer Science - Machine Learning, Statistics - Machine Learning, 41A30, 41A25, 41A63, 46E35, 68T07
الوصف: We prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n h_k(A_k x) \in \mathbb{R}$ with $h_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results about the approximation properties of univariate ridge functions to the multivariate case. Moreover, we use these bounds to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2412.08453
رقم الانضمام: edsarx.2412.08453
قاعدة البيانات: arXiv