Annotations for Exploring Food Tweets From Multiple Aspects

التفاصيل البيبلوغرافية
العنوان: Annotations for Exploring Food Tweets From Multiple Aspects
المؤلفون: Rikters, Matīss, Marrese-Taylor, Edison, Vīksna, Rinalds
المصدر: Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computation and Language, Computer Science - Artificial Intelligence
الوصف: This research builds upon the Latvian Twitter Eater Corpus (LTEC), which is focused on the narrow domain of tweets related to food, drinks, eating and drinking. LTEC has been collected for more than 12 years and reaching almost 3 million tweets with the basic information as well as extended automatically and manually annotated metadata. In this paper we supplement the LTEC with manually annotated subsets of evaluation data for machine translation, named entity recognition, timeline-balanced sentiment analysis, and text-image relation classification. We experiment with each of the data sets using baseline models and highlight future challenges for various modelling approaches.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2412.06179
رقم الانضمام: edsarx.2412.06179
قاعدة البيانات: arXiv