Report
Classification of monads and a new moduli component of stable rank 2 bundles on $\mathbb{P}^3$ with even determinant and $c_2=9$
العنوان: | Classification of monads and a new moduli component of stable rank 2 bundles on $\mathbb{P}^3$ with even determinant and $c_2=9$ |
---|---|
المؤلفون: | Fontes, Aislan Leal |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Algebraic Geometry, 14D20, 14J10 |
الوصف: | The goal of this paper is to classify all minimal monads whose cohomology is a stable rank 2 bundle on $\mathbb{P}^3$ with Chern classes $c_1=0$ and $c_2=9$, with possible exception of two non-negative minimal monads, and thus we extend the classification of the minimal monads made by Hartshorne and Rao in \cite[Section 5.3]{HR91} when $c_2\leq8$. We also prove the existence of a new component of the moduli space $\mathcal{B}(9)$ which is distinct from the Hartshorne and Ein components. Comment: 16 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2412.00043 |
رقم الانضمام: | edsarx.2412.00043 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |