Optimal payoff under Bregman-Wasserstein divergence constraints

التفاصيل البيبلوغرافية
العنوان: Optimal payoff under Bregman-Wasserstein divergence constraints
المؤلفون: Pesenti, Silvana M., Vanduffel, Steven, Yang, Yang, Yao, Jing
سنة النشر: 2024
المجموعة: Quantitative Finance
مصطلحات موضوعية: Quantitative Finance - Portfolio Management, Quantitative Finance - Mathematical Finance, Quantitative Finance - Risk Management
الوصف: We study optimal payoff choice for an expected utility maximizer under the constraint that their payoff is not allowed to deviate ``too much'' from a given benchmark. We solve this problem when the deviation is assessed via a Bregman-Wasserstein (BW) divergence, generated by a convex function $\phi$. Unlike the Wasserstein distance (i.e., when $\phi(x)=x^2$). The inherent asymmetry of the BW divergence makes it possible to penalize positive deviations different than negative ones. As a main contribution, we provide the optimal payoff in this setting. Numerical examples illustrate that the choice of $\phi$ allow to better align the payoff choice with the objectives of investors.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2411.18397
رقم الانضمام: edsarx.2411.18397
قاعدة البيانات: arXiv