التفاصيل البيبلوغرافية
العنوان: |
Optimal payoff under Bregman-Wasserstein divergence constraints |
المؤلفون: |
Pesenti, Silvana M., Vanduffel, Steven, Yang, Yang, Yao, Jing |
سنة النشر: |
2024 |
المجموعة: |
Quantitative Finance |
مصطلحات موضوعية: |
Quantitative Finance - Portfolio Management, Quantitative Finance - Mathematical Finance, Quantitative Finance - Risk Management |
الوصف: |
We study optimal payoff choice for an expected utility maximizer under the constraint that their payoff is not allowed to deviate ``too much'' from a given benchmark. We solve this problem when the deviation is assessed via a Bregman-Wasserstein (BW) divergence, generated by a convex function $\phi$. Unlike the Wasserstein distance (i.e., when $\phi(x)=x^2$). The inherent asymmetry of the BW divergence makes it possible to penalize positive deviations different than negative ones. As a main contribution, we provide the optimal payoff in this setting. Numerical examples illustrate that the choice of $\phi$ allow to better align the payoff choice with the objectives of investors. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2411.18397 |
رقم الانضمام: |
edsarx.2411.18397 |
قاعدة البيانات: |
arXiv |