Quantitative Estimates on Invariant Manifolds for Surface Diffeomorphisms

التفاصيل البيبلوغرافية
العنوان: Quantitative Estimates on Invariant Manifolds for Surface Diffeomorphisms
المؤلفون: Crovisier, Sylvain, Lyubich, Mikhail, Pujals, Enrique, Yang, Jonguk
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Dynamical Systems, 37C05 (primary) 37E30 (secondary)
الوصف: We carry out a detailed quantitative analysis on the geometry of invariant manifolds for smooth dissipative systems in dimension two. We begin by quantifying the regularity of any orbit (finite or infinite) in the phase space with a set of explicit inequalities. Then we relate this directly to the quasi-linearization of the local dynamics on regular neighborhoods of this orbit. The parameters of regularity explicitly determine the sizes of the regular neighborhoods and the smooth norms of the corresponding regular charts. As a corollary, we establish the existence of smooth stable and center manifolds with uniformly bounded geometries for regular orbits independently of any pre-existing invariant measure. This provides us with the technical background for the renormalization theory of H\'enon-like maps developed in the sequel papers.
Comment: 38 pages, 0 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2411.13286
رقم الانضمام: edsarx.2411.13286
قاعدة البيانات: arXiv