Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data

التفاصيل البيبلوغرافية
العنوان: Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data
المؤلفون: Byun, Sun-Sig, Kim, Hongsoo, Oh, Jehan
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, 35B65, 35D40, 35J60, 35J70
الوصف: We establish interior $W^{2,\delta}$ type estimates for a class of degenerate fully nonlinear elliptic equations with $L^n$ data. The main idea of our approach is to slide $C^{1,\alpha}$ cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent $C^{1,\alpha}$ cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems.
Comment: 26 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2411.02846
رقم الانضمام: edsarx.2411.02846
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.2411.02846
1128
3
Report
report
1128.03051757813
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2411.02846&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/2411.02846 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Byun%2C+Sun-Sig%22">Byun, Sun-Sig</searchLink><br /><searchLink fieldCode="AR" term="%22Kim%2C+Hongsoo%22">Kim, Hongsoo</searchLink><br /><searchLink fieldCode="AR" term="%22Oh%2C+Jehan%22">Oh, Jehan</searchLink> )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2024 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Analysis+of+PDEs%22">Mathematics - Analysis of PDEs</searchLink><br /><searchLink fieldCode="DE" term="%2235B65%2C+35D40%2C+35J60%2C+35J70%22">35B65, 35D40, 35J60, 35J70</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We establish interior $W^{2,\delta}$ type estimates for a class of degenerate fully nonlinear elliptic equations with $L^n$ data. The main idea of our approach is to slide $C^{1,\alpha}$ cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent $C^{1,\alpha}$ cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems.<br />Comment: 26 pages )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2411.02846" linkWindow="_blank">http://arxiv.org/abs/2411.02846</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.2411.02846 )
RecordInfo Array ( [BibEntity] => Array ( [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematics - Analysis of PDEs [Type] => general ) [1] => Array ( [SubjectFull] => 35B65, 35D40, 35J60, 35J70 [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Byun, Sun-Sig ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Kim, Hongsoo ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Oh, Jehan ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 05 [M] => 11 [Type] => published [Y] => 2024 ) ) ) ) ) ) )
IllustrationInfo