Report
Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data
العنوان: | Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data |
---|---|
المؤلفون: | Byun, Sun-Sig, Kim, Hongsoo, Oh, Jehan |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs, 35B65, 35D40, 35J60, 35J70 |
الوصف: | We establish interior $W^{2,\delta}$ type estimates for a class of degenerate fully nonlinear elliptic equations with $L^n$ data. The main idea of our approach is to slide $C^{1,\alpha}$ cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent $C^{1,\alpha}$ cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems. Comment: 26 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2411.02846 |
رقم الانضمام: | edsarx.2411.02846 |
قاعدة البيانات: | arXiv |
ResultId |
1 |
---|---|
Header |
edsarx arXiv edsarx.2411.02846 1128 3 Report report 1128.03051757813 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2411.02846&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/2411.02846 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Byun%2C+Sun-Sig%22">Byun, Sun-Sig</searchLink><br /><searchLink fieldCode="AR" term="%22Kim%2C+Hongsoo%22">Kim, Hongsoo</searchLink><br /><searchLink fieldCode="AR" term="%22Oh%2C+Jehan%22">Oh, Jehan</searchLink> ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2024 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Analysis+of+PDEs%22">Mathematics - Analysis of PDEs</searchLink><br /><searchLink fieldCode="DE" term="%2235B65%2C+35D40%2C+35J60%2C+35J70%22">35B65, 35D40, 35J60, 35J70</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We establish interior $W^{2,\delta}$ type estimates for a class of degenerate fully nonlinear elliptic equations with $L^n$ data. The main idea of our approach is to slide $C^{1,\alpha}$ cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent $C^{1,\alpha}$ cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems.<br />Comment: 26 pages ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2411.02846" linkWindow="_blank">http://arxiv.org/abs/2411.02846</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.2411.02846 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Mathematics - Analysis of PDEs
[Type] => general
)
[1] => Array
(
[SubjectFull] => 35B65, 35D40, 35J60, 35J70
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Byun, Sun-Sig
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Kim, Hongsoo
)
)
)
[2] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Oh, Jehan
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 05
[M] => 11
[Type] => published
[Y] => 2024
)
)
)
)
)
)
)
|
IllustrationInfo |