Report
Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data
العنوان: | Interior $W^{2,\delta}$ type estimates for degenerate fully nonlinear elliptic equations with $L^n$ data |
---|---|
المؤلفون: | Byun, Sun-Sig, Kim, Hongsoo, Oh, Jehan |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs, 35B65, 35D40, 35J60, 35J70 |
الوصف: | We establish interior $W^{2,\delta}$ type estimates for a class of degenerate fully nonlinear elliptic equations with $L^n$ data. The main idea of our approach is to slide $C^{1,\alpha}$ cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent $C^{1,\alpha}$ cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems. Comment: 26 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2411.02846 |
رقم الانضمام: | edsarx.2411.02846 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |