Hochschild cohomology of the universal associative conformal envelope of the Virasoro Lie conformal algebra with coefficients in all finite modules

التفاصيل البيبلوغرافية
العنوان: Hochschild cohomology of the universal associative conformal envelope of the Virasoro Lie conformal algebra with coefficients in all finite modules
المؤلفون: Alhussein, Hassan, Kolesnikov, Pavel, Lopatkin, Viktor
المصدر: Communications in Mathematics, Volume 33 (2025), Issue 3 (Special issue: European Non-Associative Algebra Seminar) (January 9, 2025) cm:14674
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Rings and Algebras, 16E40 (primary), 81T05, 17A30, 17B55, 17A61
الوصف: In this paper, we find the Hochschild cohomology groups of the universal associative conformal envelope $U(3)$ of the Virasoro Lie conformal algebra with respect to associative locality $N=3$ on the generator with coefficients in all finite modules. In order to obtain this result, we construct the Anick resolution via the algebraic discrete Morse theory and Gr\"obner--Shirshov basis.
Comment: arXiv admin note: text overlap with arXiv:2212.13134
نوع الوثيقة: Working Paper
DOI: 10.46298/cm.14674
URL الوصول: http://arxiv.org/abs/2411.00812
رقم الانضمام: edsarx.2411.00812
قاعدة البيانات: arXiv