Report
Hochschild cohomology of the universal associative conformal envelope of the Virasoro Lie conformal algebra with coefficients in all finite modules
العنوان: | Hochschild cohomology of the universal associative conformal envelope of the Virasoro Lie conformal algebra with coefficients in all finite modules |
---|---|
المؤلفون: | Alhussein, Hassan, Kolesnikov, Pavel, Lopatkin, Viktor |
المصدر: | Communications in Mathematics, Volume 33 (2025), Issue 3 (Special issue: European Non-Associative Algebra Seminar) (January 9, 2025) cm:14674 |
سنة النشر: | 2024 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Rings and Algebras, 16E40 (primary), 81T05, 17A30, 17B55, 17A61 |
الوصف: | In this paper, we find the Hochschild cohomology groups of the universal associative conformal envelope $U(3)$ of the Virasoro Lie conformal algebra with respect to associative locality $N=3$ on the generator with coefficients in all finite modules. In order to obtain this result, we construct the Anick resolution via the algebraic discrete Morse theory and Gr\"obner--Shirshov basis. Comment: arXiv admin note: text overlap with arXiv:2212.13134 |
نوع الوثيقة: | Working Paper |
DOI: | 10.46298/cm.14674 |
URL الوصول: | http://arxiv.org/abs/2411.00812 |
رقم الانضمام: | edsarx.2411.00812 |
قاعدة البيانات: | arXiv |
DOI: | 10.46298/cm.14674 |
---|