On low frequency inference for diffusions without the hot spots conjecture

التفاصيل البيبلوغرافية
العنوان: On low frequency inference for diffusions without the hot spots conjecture
المؤلفون: Alberti, Giovanni S., Barnes, Douglas, Jambhale, Aditya, Nickl, Richard
سنة النشر: 2024
المجموعة: Computer Science
Mathematics
Statistics
مصطلحات موضوعية: Mathematics - Statistics Theory, Mathematics - Analysis of PDEs, Mathematics - Numerical Analysis
الوصف: We remove the dependence on the `hot-spots' conjecture in two of the main theorems of the recent paper of Nickl (2024, Annals of Statistics). Specifically, we characterise the minimax convergence rates for estimation of the transition operator $P_{f}$ arising from the Neumann Laplacian with diffusion coefficient $f$ on arbitrary convex domains with smooth boundary, and further show that a general Lipschitz stability estimate holds for the inverse map $P_f\mapsto f$ from $H^2\to H^2$ to $L^1$.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2410.19393
رقم الانضمام: edsarx.2410.19393
قاعدة البيانات: arXiv