Anzahl theorems for disjoint subspaces generating a non-degenerate subspace II: quadratic forms

التفاصيل البيبلوغرافية
العنوان: Anzahl theorems for disjoint subspaces generating a non-degenerate subspace II: quadratic forms
المؤلفون: De Boeck, Maarten, Van de Voorde, Geertrui
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, 51A50, 51E20
الوصف: In this paper, we solve a classical counting problem for non-degenerate quadratic forms defined on a vector space in odd characteristic; given a subspace $\pi$, we determine the number of non-singular subspaces that are trivially intersecting with $\pi$ and span a non-singular subspace with $\pi$. Lower bounds for the quantity of such pairs where $\pi$ is non-singular were first studied in `Glasby, Niemeyer, Praeger (Finite Fields Appl., 2022)', which was later improved for even-dimensional subspaces in `Glasby, Ihringer, Mattheus (Des. Codes Cryptogr., 2023)' and generalised in `Glasby, Niemeyer, Praeger (Linear Algebra Appl., 2022)'. The explicit formulae, which allow us to give the exact proportion and improve the known lower bounds were derived in the symplectic and Hermitian case in `De Boeck and Van de Voorde (Linear Algebra Appl. 2024)'. This paper deals with the more complicated quadratic case.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2409.12312
رقم الانضمام: edsarx.2409.12312
قاعدة البيانات: arXiv