Report
Analysis of Centrifugal Clutches in Two-Speed Automatic Transmissions with Deep Learning-Based Engagement Prediction
العنوان: | Analysis of Centrifugal Clutches in Two-Speed Automatic Transmissions with Deep Learning-Based Engagement Prediction |
---|---|
المؤلفون: | Lin, Bo-Yi, Lin, Kai Chun |
سنة النشر: | 2024 |
المجموعة: | Computer Science Mathematics |
مصطلحات موضوعية: | Computer Science - Machine Learning, Computer Science - Computational Engineering, Finance, and Science, Mathematics - Numerical Analysis |
الوصف: | This paper presents a comprehensive numerical analysis of centrifugal clutch systems integrated with a two-speed automatic transmission, a key component in automotive torque transfer. Centrifugal clutches enable torque transmission based on rotational speed without external controls. The study systematically examines various clutch configurations effects on transmission dynamics, focusing on torque transfer, upshifting, and downshifting behaviors under different conditions. A Deep Neural Network (DNN) model predicts clutch engagement using parameters such as spring preload and shoe mass, offering an efficient alternative to complex simulations. The integration of deep learning and numerical modeling provides critical insights for optimizing clutch designs, enhancing transmission performance and efficiency. |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2409.09755 |
رقم الانضمام: | edsarx.2409.09755 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |