Open-Source Molecular Processing Pipeline for Generating Molecules

التفاصيل البيبلوغرافية
العنوان: Open-Source Molecular Processing Pipeline for Generating Molecules
المؤلفون: Shreyas, V, Siguenza, Jose, Bania, Karan, Ramsundar, Bharath
سنة النشر: 2024
المجموعة: Computer Science
Quantitative Biology
مصطلحات موضوعية: Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Quantitative Biology - Biomolecules
الوصف: Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].
Comment: Presented at the Molecular Machine Learning Conference 2024 (MoML 2024), BayLearn 2024 and the Machine Learning and Physical Sciences (ML4PS) Workshop at NeurIPS 2024
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2408.06261
رقم الانضمام: edsarx.2408.06261
قاعدة البيانات: arXiv