On compact complex surfaces with finite homotopy rank-sum

التفاصيل البيبلوغرافية
العنوان: On compact complex surfaces with finite homotopy rank-sum
المؤلفون: Biswas, Indranil, Hajra, Buddhadev
سنة النشر: 2024
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Algebraic Geometry, Mathematics - Complex Variables, Mathematics - Geometric Topology, 14F35, 14F45, 14J10, 55P20, 55R10
الوصف: A topological space (not necessarily simply connected) is said to have finite homotopy rank-sum if the sum of the ranks of all higher homotopy groups (from the second homotopy group onward) is finite. In this article, we characterize the smooth compact complex Kaehler surfaces having finite homotopy rank-sum. We also prove the Steinness of the universal cover of these surfaces assuming holomorphic convexity of the universal cover.
Comment: Final version; Proc. Amer. Math. Soc. (to appear)
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2408.04558
رقم الانضمام: edsarx.2408.04558
قاعدة البيانات: arXiv