Quantum states as countable convex combination of pure states with bounded energy

التفاصيل البيبلوغرافية
العنوان: Quantum states as countable convex combination of pure states with bounded energy
المؤلفون: Lopez, Juan Pablo
سنة النشر: 2024
المجموعة: Mathematics
Mathematical Physics
Quantum Physics
مصطلحات موضوعية: Mathematical Physics, Quantum Physics
الوصف: We give response to the question: in infinite dimension states,given a state with energy bounded by E, we can write the state as a countable convex combination of pure states with energy bounded by E. We review the Alicki-Fannes-Winter technique to obtain a uniform continuity bound for the von Neumann entropy in states that are a mix of pure states with bounded energy, using this bound we conclude that for a Hamiltonian satisfying the Gibb's hypothesis such states cannot exist.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2407.05950
رقم الانضمام: edsarx.2407.05950
قاعدة البيانات: arXiv