التفاصيل البيبلوغرافية
العنوان: |
Genus theory, governing field, ramification and Frobenius |
المؤلفون: |
Mfumu, Roslan Ibara Ngiza, Maire, Christian |
سنة النشر: |
2024 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Number Theory |
الوصف: |
In this work we develop, through a governing field, genus theory for a number field $\K$ with tame ramification in $T$ and splitting in $S$, where $T$ and $S$ are finite disjoint sets of primes of $\K$. This approach extends that initiated by the second author in the case of the class group. It allows expressing the $S$-$T$ genus number of a cyclic extension $\L/\K$ of degree $p$ in terms of the rank of a matrix constructed from the Frobenius elements of the primes ramified in $\L/\K$, in the Galois group of the underlying governing extension. For quadratic extensions $\L/\Q$, the matrices in question are constructed from the Legendre symbols between the primes ramified in $\L/\Q$ and the primes in $S$. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2407.03754 |
رقم الانضمام: |
edsarx.2407.03754 |
قاعدة البيانات: |
arXiv |